ترغب بنشر مسار تعليمي؟ اضغط هنا

Vision-Based Gait Analysis for Senior Care

125   0   0.0 ( 0 )
 نشر من قبل Jun-Ting Hsieh
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the senior population rapidly increases, it is challenging yet crucial to provide effective long-term care for seniors who live at home or in senior care facilities. Smart senior homes, which have gained widespread interest in the healthcare community, have been proposed to improve the well-being of seniors living independently. In particular, non-intrusive, cost-effective sensors placed in these senior homes enable gait characterization, which can provide clinically relevant information including mobility level and early neurodegenerative disease risk. In this paper, we present a method to perform gait analysis from a single camera placed within the home. We show that we can accurately calculate various gait parameters, demonstrating the potential for our system to monitor the long-term gait of seniors and thus aid clinicians in understanding a patients medical profile.



قيم البحث

اقرأ أيضاً

Parkinsons disease (PD) is a progressive neurological disorder primarily affecting motor function resulting in tremor at rest, rigidity, bradykinesia, and postural instability. The physical severity of PD impairments can be quantified through the Mov ement Disorder Society Unified Parkinsons Disease Rating Scale (MDS-UPDRS), a widely used clinical rating scale. Accurate and quantitative assessment of disease progression is critical to developing a treatment that slows or stops further advancement of the disease. Prior work has mainly focused on dopamine transport neuroimaging for diagnosis or costly and intrusive wearables evaluating motor impairments. For the first time, we propose a computer vision-based model that observes non-intrusive video recordings of individuals, extracts their 3D body skeletons, tracks them through time, and classifies the movements according to the MDS-UPDRS gait scores. Experimental results show that our proposed method performs significantly better than chance and competing methods with an F1-score of 0.83 and a balanced accuracy of 81%. This is the first benchmark for classifying PD patients based on MDS-UPDRS gait severity and could be an objective biomarker for disease severity. Our work demonstrates how computer-assisted technologies can be used to non-intrusively monitor patients and their motor impairments. The code is available at https://github.com/mlu355/PD-Motor-Severity-Estimation.
Background: Maintaining a healthy diet is vital to avoid health-related issues, e.g., undernutrition, obesity and many non-communicable diseases. An indispensable part of the health diet is dietary assessment. Traditional manual recording methods are burdensome and contain substantial biases and errors. Recent advances in Artificial Intelligence, especially computer vision technologies, have made it possible to develop automatic dietary assessment solutions, which are more convenient, less time-consuming and even more accurate to monitor daily food intake. Scope and approach: This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation. Vision-based food analysis methods, including food recognition, detection and segmentation, are systematically summarized, and methods of volume estimation and nutrient derivation are also given. The prosperity of deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition. The recently proposed end-to-end methods are also discussed. We further analyze existing dietary assessment datasets, indicating that one large-scale benchmark is urgently needed, and finally highlight key challenges and future trends for VBDA. Key findings and conclusions: After thorough exploration, we find that multi-task end-to-end deep learning approaches are one important trend of VBDA. Despite considerable research progress, many challenges remain for VBDA due to the meal complexity. We also provide the latest ideas for future development of VBDA, e.g., fine-grained food analysis and accurate volume estimation. This survey aims to encourage researchers to propose more practical solutions for VBDA.
Computer vision researchers prefer to estimate age from face images because facial features provide useful information. However, estimating age from face images becomes challenging when people are distant from the camera or occluded. A persons gait i s a unique biometric feature that can be perceived efficiently even at a distance. Thus, gait can be used to predict age when face images are not available. However, existing gait-based classification or regression methods ignore the ordinal relationship of different ages, which is an important clue for age estimation. This paper proposes an ordinal distribution regression with a global and local convolutional neural network for gait-based age estimation. Specifically, we decompose gait-based age regression into a series of binary classifications to incorporate the ordinal age information. Then, an ordinal distribution loss is proposed to consider the inner relationships among these classifications by penalizing the distribution discrepancy between the estimated value and the ground truth. In addition, our neural network comprises a global and three local sub-networks, and thus, is capable of learning the global structure and local details from the head, body, and feet. Experimental results indicate that the proposed approach outperforms state-of-the-art gait-based age estimation methods on the OULP-Age dataset.
Abnormal gait, its associated falls and complications have high patient morbidity, mortality. Computer vision detects, predicts patient gait abnormalities, assesses fall risk and serves as clinical decision support tool for physicians. This paper per forms a systematic review of how computer vision, machine learning models perform an abnormal patients gait assessment. Computer vision is beneficial in gait analysis, it helps capture the patient posture. Several literature suggests the use of different machine learning algorithms such as SVM, ANN, K-Star, Random Forest, KNN, among others to perform the classification on the features extracted to study patient gait abnormalities.
Unlike conventional frame-based sensors, event-based visual sensors output information through spikes at a high temporal resolution. By only encoding changes in pixel intensity, they showcase a low-power consuming, low-latency approach to visual info rmation sensing. To use this information for higher sensory tasks like object recognition and tracking, an essential simplification step is the extraction and learning of features. An ideal feature descriptor must be robust to changes involving (i) local transformations and (ii) re-appearances of a local event pattern. To that end, we propose a novel spatiotemporal feature representation learning algorithm based on slow feature analysis (SFA). Using SFA, smoothly changing linear projections are learnt which are robust to local visual transformations. In order to determine if the features can learn to be invariant to various visual transformations, feature point tracking tasks are used for evaluation. Extensive experiments across two datasets demonstrate the adaptability of the spatiotemporal feature learner to translation, scaling and rotational transformations of the feature points. More importantly, we find that the obtained feature representations are able to exploit the high temporal resolution of such event-based cameras in generating better feature tracks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا