ترغب بنشر مسار تعليمي؟ اضغط هنا

Ordinal Distribution Regression for Gait-based Age Estimation

154   0   0.0 ( 0 )
 نشر من قبل Haiping Zhu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computer vision researchers prefer to estimate age from face images because facial features provide useful information. However, estimating age from face images becomes challenging when people are distant from the camera or occluded. A persons gait is a unique biometric feature that can be perceived efficiently even at a distance. Thus, gait can be used to predict age when face images are not available. However, existing gait-based classification or regression methods ignore the ordinal relationship of different ages, which is an important clue for age estimation. This paper proposes an ordinal distribution regression with a global and local convolutional neural network for gait-based age estimation. Specifically, we decompose gait-based age regression into a series of binary classifications to incorporate the ordinal age information. Then, an ordinal distribution loss is proposed to consider the inner relationships among these classifications by penalizing the distribution discrepancy between the estimated value and the ground truth. In addition, our neural network comprises a global and three local sub-networks, and thus, is capable of learning the global structure and local details from the head, body, and feet. Experimental results indicate that the proposed approach outperforms state-of-the-art gait-based age estimation methods on the OULP-Age dataset.



قيم البحث

اقرأ أيضاً

Image ordinal estimation is to predict the ordinal label of a given image, which can be categorized as an ordinal regression problem. Recent methods formulate an ordinal regression problem as a series of binary classification problems. Such methods c annot ensure that the global ordinal relationship is preserved since the relationships among different binary classifiers are neglected. We propose a novel ordinal regression approach, termed Convolutional Ordinal Regression Forest or CORF, for image ordinal estimation, which can integrate ordinal regression and differentiable decision trees with a convolutional neural network for obtaining precise and stable global ordinal relationships. The advantages of the proposed CORF are twofold. First, instead of learning a series of binary classifiers emph{independently}, the proposed method aims at learning an ordinal distribution for ordinal regression by optimizing those binary classifiers emph{simultaneously}. Second, the differentiable decision trees in the proposed CORF can be trained together with the ordinal distribution in an end-to-end manner. The effectiveness of the proposed CORF is verified on two image ordinal estimation tasks, i.e. facial age estimation and image aesthetic assessment, showing significant improvements and better stability over the state-of-the-art ordinal regression methods.
Estimation of bone age from hand radiographs is essential to determine skeletal age in diagnosing endocrine disorders and depicting the growth status of children. However, existing automatic methods only apply their models to test images without cons idering the discrepancy between training samples and test samples, which will lead to a lower generalization ability. In this paper, we propose an adversarial regression learning network (ARLNet) for bone age estimation. Specifically, we first extract bone features from a fine-tuned Inception V3 neural network and propose regression percentage loss for training. To reduce the discrepancy between training and test data, we then propose adversarial regression loss and feature reconstruction loss to guarantee the transition from training data to test data and vice versa, preserving invariant features from both training and test data. Experimental results show that the proposed model outperforms state-of-the-art methods.
Automatic estimation of pain intensity from facial expressions in videos has an immense potential in health care applications. However, domain adaptation (DA) is needed to alleviate the problem of domain shifts that typically occurs between video dat a captured in source and target do-mains. Given the laborious task of collecting and annotating videos, and the subjective bias due to ambiguity among adjacent intensity levels, weakly-supervised learning (WSL)is gaining attention in such applications. Yet, most state-of-the-art WSL models are typically formulated as regression problems, and do not leverage the ordinal relation between intensity levels, nor the temporal coherence of multiple consecutive frames. This paper introduces a new deep learn-ing model for weakly-supervised DA with ordinal regression(WSDA-OR), where videos in target domain have coarse la-bels provided on a periodic basis. The WSDA-OR model enforces ordinal relationships among the intensity levels as-signed to the target sequences, and associates multiple relevant frames to sequence-level labels (instead of a single frame). In particular, it learns discriminant and domain-invariant feature representations by integrating multiple in-stance learning with deep adversarial DA, where soft Gaussian labels are used to efficiently represent the weak ordinal sequence-level labels from the target domain. The proposed approach was validated on the RECOLA video dataset as fully-labeled source domain, and UNBC-McMaster video data as weakly-labeled target domain. We have also validated WSDA-OR on BIOVID and Fatigue (private) datasets for sequence level estimation. Experimental results indicate that our approach can provide a significant improvement over the state-of-the-art models, allowing to achieve a greater localization accuracy.
Estimation of pain intensity from facial expressions captured in videos has an immense potential for health care applications. Given the challenges related to subjective variations of facial expressions, and operational capture conditions, the accura cy of state-of-the-art DL models for recognizing facial expressions may decline. Domain adaptation has been widely explored to alleviate the problem of domain shifts that typically occur between video data captured across various source and target domains. Moreover, given the laborious task of collecting and annotating videos, and subjective bias due to ambiguity among adjacent intensity levels, weakly-supervised learning is gaining attention in such applications. State-of-the-art WSL models are typically formulated as regression problems, and do not leverage the ordinal relationship among pain intensity levels, nor temporal coherence of multiple consecutive frames. This paper introduces a new DL model for weakly-supervised DA with ordinal regression that can be adapted using target domain videos with coarse labels provided on a periodic basis. The WSDA-OR model enforces ordinal relationships among intensity levels assigned to target sequences, and associates multiple relevant frames to sequence-level labels. In particular, it learns discriminant and domain-invariant feature representations by integrating multiple instance learning with deep adversarial DA, where soft Gaussian labels are used to efficiently represent the weak ordinal sequence-level labels from target domain. The proposed approach was validated using RECOLA video dataset as fully-labeled source domain data, and UNBC-McMaster shoulder pain video dataset as weakly-labeled target domain data. We have also validated WSDA-OR on BIOVID and Fatigue datasets for sequence level estimation.
In this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a d irect mapping for the Support Estimation (SE) task in a representation-based classification problem. We further propose and demonstrate that representation-based methods (sparse or collaborative representation) can be used in well-designed regression problems. To the best of our knowledge, this is the first representation-based method proposed for performing a regression task by utilizing the modified CSENs; and hence, we name this novel approach as Representation-based Regression (RbR). The initial version of CSENs has a proxy mapping stage (i.e., a coarse estimation for the support set) that is required for the input. In this study, we improve the CSEN model by proposing Compressive Learning CSEN (CL-CSEN) that has the ability to jointly optimize the so-called proxy mapping stage along with convolutional layers. The experimental evaluations using the KITTI 3D Object Detection distance estimation dataset show that the proposed method can achieve a significantly improved distance estimation performance over all competing methods. Finally, the software implementations of the methods are publicly shared at https://github.com/meteahishali/CSENDistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا