ترغب بنشر مسار تعليمي؟ اضغط هنا

Unified geometric multigrid algorithm for hybridized high-order finite element methods

109   0   0.0 ( 0 )
 نشر من قبل Sriramkrishnan Muralikrishnan
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a standard elliptic partial differential equation and propose a geometric multigrid algorithm based on Dirichlet-to-Neumann (DtN) maps for hybridized high-order finite element methods. The proposed unified approach is applicable to any locally conservative hybridized finite element method including multinumerics with different hybridized methods in different parts of the domain. For these methods, the linear system involves only the unknowns residing on the mesh skeleton, and constructing intergrid transfer operators is therefore not trivial. The key to our geometric multigrid algorithm is the physics-based energy-preserving intergrid transfer operators which depend only on the fine scale DtN maps. Thanks to these operators, we completely avoid upscaling of parameters and no information regarding subgrid physics is explicitly required on coarse meshes. Moreover, our algorithm is agglomeration-based and can straightforwardly handle unstructured meshes. We perform extensive numerical studies with hybridized mixed methods, hybridized discontinuous Galerkin method, weak Galerkin method, and a hybridized version of interior penalty discontinuous Galerkin methods on a range of elliptic problems including subsurface flow through highly heterogeneous porous media. We compare the performance of different smoothers and analyze the effect of stabilization parameters on the scalability of the multigrid algorithm.



قيم البحث

اقرأ أيضاً

In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise $H^1$-n orm and in the $L^2$-norm are rigorously proved for both schemes. In particular, we have devised a new parameter-friendly DG-XFEM method, which means that no sufficiently large parameters are needed to ensure the optimal convergence of the scheme. To prove the stability of bilinear forms, we derive non-standard trace and inverse inequalities for high-order polynomials on curved sub-elements divided by the interface. All the estimates are independent of the location of the interface relative to the meshes. Numerical examples are given to support the theoretical results.
73 - Brendan Keith 2020
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this wor k, we argue that all high-order methods in this class should be expected to deliver substandard uniform h-refinement convergence rates. In fact, one may not even see rates proportional to the polynomial order $p > 1$ when the exact solution is a constant function. We show that the convergence rate is limited by the regularity of an extraneous Lagrange multiplier variable which naturally appears via a saddle-point analysis. In turn, limited convergence rates appear because the regularity of this Lagrange multiplier is determined, in part, by the geometry of the domain. Numerical experiments support our conclusions.
We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also m ake connections to the unified transform method due to A.S. Fokas and co-authors, analysing particular instances of this method, proposed by J.A. DeSanto and co-authors, for problems of acoustic scattering by diffraction gratings.
We present a hybridization technique for summation-by-parts finite difference methods with weak enforcement of interface and boundary conditions for second order, linear elliptic partial differential equations. The method is based on techniques from the hybridized discontinuous Galerkin literature where local and global problems are defined for the volume and trace grid points, respectively. By using a Schur complement technique the volume points can be eliminated, which drastically reduces the system size. We derive both the local and global problems, and show that the linear systems that must be solved are symmetric positive definite. The theoretical stability results are confirmed with numerical experiments as is the accuracy of the method.
Efficient exploitation of exascale architectures requires rethinking of the numerical algorithms used in many large-scale applications. These architectures favor algorithms that expose ultra fine-grain parallelism and maximize the ratio of floating p oint operations to energy intensive data movement. One of the few viable approaches to achieve high efficiency in the area of PDE discretizations on unstructured grids is to use matrix-free/partially-assembled high-order finite element methods, since these methods can increase the accuracy and/or lower the computational time due to reduced data motion. In this paper we provide an overview of the research and development activities in the Center for Efficient Exascale Discretizations (CEED), a co-design center in the Exascale Computing Project that is focused on the development of next-generation discretization software and algorithms to enable a wide range of finite element applications to run efficiently on future hardware. CEED is a research partnership involving more than 30 computational scientists from two US national labs and five universities, including members of the Nek5000, MFEM, MAGMA and PETSc projects. We discuss the CEED co-design activities based on targeted benchmarks, miniapps and discretization libraries and our work on performance optimizations for large-scale GPU architectures. We also provide a broad overview of research and development activities in areas such as unstructured adaptive mesh refinement algorithms, matrix-free linear solvers, high-order data visualization, and list examples of collaborations with several ECP and external applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا