ﻻ يوجد ملخص باللغة العربية
In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise $H^1$-norm and in the $L^2$-norm are rigorously proved for both schemes. In particular, we have devised a new parameter-friendly DG-XFEM method, which means that no sufficiently large parameters are needed to ensure the optimal convergence of the scheme. To prove the stability of bilinear forms, we derive non-standard trace and inverse inequalities for high-order polynomials on curved sub-elements divided by the interface. All the estimates are independent of the location of the interface relative to the meshes. Numerical examples are given to support the theoretical results.
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which
The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334] is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fix
In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on ea
We consider a standard elliptic partial differential equation and propose a geometric multigrid algorithm based on Dirichlet-to-Neumann (DtN) maps for hybridized high-order finite element methods. The proposed unified approach is applicable to any lo
An $hp$ version of interface penalty finite element method ($hp$-IPFEM) is proposed for elliptic interface problems in two and three dimensions on unfitted meshes. Error estimates in broken $H^1$ norm, which are optimal with respect to $h$ and subopt