ﻻ يوجد ملخص باللغة العربية
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this work, we argue that all high-order methods in this class should be expected to deliver substandard uniform h-refinement convergence rates. In fact, one may not even see rates proportional to the polynomial order $p > 1$ when the exact solution is a constant function. We show that the convergence rate is limited by the regularity of an extraneous Lagrange multiplier variable which naturally appears via a saddle-point analysis. In turn, limited convergence rates appear because the regularity of this Lagrange multiplier is determined, in part, by the geometry of the domain. Numerical experiments support our conclusions.
For the Stokes equation over 2D and 3D domains, explicit a posteriori and a priori error estimation are novelly developed for the finite element solution. The difficulty in handling the divergence-free condition of the Stokes equation is solved by ut
Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babuv{s}ka-Brezzi type condition within the space H(div) x L2.
The analysis of the double-diffusion model and $mathbf{H}(mathrm{div})$-conforming method introduced in [Burger, Mendez, Ruiz-Baier, SINUM (2019), 57:1318--1343] is extended to the time-dependent case. In addition, the efficiency and reliability anal
This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the
We discuss the error analysis of the lowest degree Crouzeix-Raviart and Raviart-Thomas finite element methods applied to a two-dimensional Poisson equation. To obtain error estimations, we use the techniques developed by Babuv{s}ka-Aziz and the autho