ﻻ يوجد ملخص باللغة العربية
Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwells equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 1E-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 1E-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.
The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $alpha$, producing electric polarization by the magnetic field and $beta$, producing magnetic polarization by the electric field. Plane-wave propagation of tim
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed
A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference. Here we show that these intensity variations can be entirely suppressed by adding disorder
We propose a general method to evaluate the material parameters for arbitrary shape transformation media. By solving the original coordinates in the transformed region via Laplaces equations, we can obtain the deformation field numerically, in turn t
It is known that the Fresnel wave surfaces of transparent biaxial media have 4 singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear mater