ﻻ يوجد ملخص باللغة العربية
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.
We establish the well-posedness, the finite speed propagation, and a regularity result for Maxwells equations in media consisting of dispersive (frequency dependent) metamaterials. Two typical examples for such metamaterials are materials obeying Dru
Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the sprea
The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $alpha$, producing electric polarization by the magnetic field and $beta$, producing magnetic polarization by the electric field. Plane-wave propagation of tim
Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulat
We investigate in detail the qualitative similarities between the pulse localization characteristics observed using sinusoidal phase modulation during linear propagation and those seen during the evolution of Akhmediev breathers during propagation in