ﻻ يوجد ملخص باللغة العربية
The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $alpha$, producing electric polarization by the magnetic field and $beta$, producing magnetic polarization by the electric field. Plane-wave propagation of time-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $omega eq 0$) the dispersion equation has a cubic and homogeneous form, whence the wave vector $k$ is either zero or has arbitrary magnitude. In many cases there is no dispersion equation (NDE medium) to restrict the wave vector in an EME medium. Attention is paid to the case where the two medium dyadics have the same set of eigenvectors. In such a case the $k$ vector is restricted to three eigenplanes defined by the medium dyadics. The emergence of such a result is demonstrated by considering a more regular medium, and taking the limit of zero permittivity and permeability. The special case of uniaxial EME medium is studied in detail. It is shown that an interface of a uniaxial EME medium appears as a DB boundary when the axis of the medium is normal to the interface. More in general, EME media display interesting wave effects that can potentially be realized through metasurface engineering.
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed
Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulat
We establish the well-posedness, the finite speed propagation, and a regularity result for Maxwells equations in media consisting of dispersive (frequency dependent) metamaterials. Two typical examples for such metamaterials are materials obeying Dru
A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference. Here we show that these intensity variations can be entirely suppressed by adding disorder
Electromagnetic metasurfaces enable the advanced control of surface-wave propagation by spatially tailoring the local surface reactance. Interestingly, tailoring the surface resistance distribution in space provides new, largely unexplored degrees of