ﻻ يوجد ملخص باللغة العربية
Algorithms for acoustic source localization and tracking provide estimates of the positional information about active sound sources in acoustic environments and are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. The aim of the IEEE-AASP Challenge on sound source localization and tracking (LOCATA) was to objectively benchmark state-of-the-art localization and tracking algorithms using an open-access data corpus of recordings for scenarios typically encountered in audio and acoustic signal processing applications. The challenge tasks ranged from the localization of a single source with a static microphone array to the tracking of multiple moving sources with a moving microphone array.
The Multi-target Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on
The Magnificent CE$ u$NS Workshop (2018) was held November 2 & 3 of 2018 on the University of Chicago campus and brought together theorists, phenomenologists, and experimentalists working in numerous areas but sharing a common interest in the process
The Multitarget Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on
This short paper presents an efficient, flexible implementation of the SRP-PHAT multichannel sound source localization method. The method is evaluated on the single-source tasks of the LOCATA 2018 development dataset, and an associated Matlab toolbox is made available online.
The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independe