ترغب بنشر مسار تعليمي؟ اضغط هنا

Proceedings of The Magnificent CE$ u$NS Workshop 2018

74   0   0.0 ( 0 )
 نشر من قبل Grayson Rich
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Magnificent CE$ u$NS Workshop (2018) was held November 2 & 3 of 2018 on the University of Chicago campus and brought together theorists, phenomenologists, and experimentalists working in numerous areas but sharing a common interest in the process of coherent elastic neutrino-nucleus scattering (CE$ u$NS). This is a collection of abstract-like summaries of the talks given at the meeting, including links to the slides presented. This document and the slides from the meeting provide an overview of the field and a snapshot of the robust CE$ u$NS-related efforts both planned and underway.

قيم البحث

اقرأ أيضاً

The MesonNet International Workshop was held in the Laboratori Nazionali di Frascati from September the 29th to October the 1st, 2014, being the concluding meeting of the MesonNet research network within EU HadronPhysics3 project. MesonNet is a resea rch network focused on light meson physics gathering experimentalist and theoreticians from Europe and abroad. An overview of the research projects related to the scope of the network is presented in these mini-proceedings.
75 - J.I. Collar , A.R.L. Kavner , 2019
A new measurement of the quenching factor for low-energy nuclear recoils in CsI[Na] is presented. Past measurements are revisited, identifying and correcting several systematic effects. The resulting global data are well-described by a physics-based model for the generation of scintillation by ions in this material, in agreement with phenomenological considerations. The uncertainty in the new model is reduced by a factor of four with respect to an energy-independent quenching factor initially adopted as a compromise by the COHERENT collaboration. A significantly improved agreement with Standard Model predictions for the first measurement of CE$ u$NS is generated. We emphasize the critical impact of the quenching factor on the search for new physics via CE$ u$NS experiments.
Algorithms for acoustic source localization and tracking provide estimates of the positional information about active sound sources in acoustic environments and are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. The aim of the IEEE-AASP Challenge on sound source localization and tracking (LOCATA) was to objectively benchmark state-of-the-art localization and tracking algorithms using an open-access data corpus of recordings for scenarios typically encountered in audio and acoustic signal processing applications. The challenge tasks ranged from the localization of a single source with a static microphone array to the tracking of multiple moving sources with a moving microphone array.
We explore the possibility of having a fermionic dark matter candidate within $U(1)$ models for CE$ u$NS experiments in light of the latest COHERENT data and the current and future dark matter direct detection experiments. A vector-like fermionic dar k matter has been introduced which is charged under $U(1)$ symmetry, naturally stable after spontaneous symmetry breaking. We perform a complementary investigation using CE$ u$NS experiments and dark matter direct detection searches to explore dark matter as well as $Z^{prime}$ boson parameter space. Depending on numerous other constraints arising from the beam dump, LHCb, BABAR, and the forthcoming reactor experiment proposed by the SBC collaboration, we explore the allowed region of $Z^{prime}$ portal dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا