ترغب بنشر مسار تعليمي؟ اضغط هنا

MCE 2018: The 1st Multi-target Speaker Detection and Identification Challenge Evaluation

48   0   0.0 ( 0 )
 نشر من قبل Suwon Shon
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The Multi-target Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on real-world telephone conversations. Data recordings are generated from call center customer-agent conversations. The task is to measure how accurately one can detect 1) whether a test recording is spoken by a blacklisted speaker, and 2) which specific blacklisted speaker was talking. This paper outlines the challenge and provides its baselines, results, and discussions.

قيم البحث

اقرأ أيضاً

The Multitarget Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on real-world telephone conversations. Data recordings are generated from call center customer-agent conversations. Each conversation is represented by a single i-vector. Given a pool of training and development data from non-Blacklist and Blacklist speakers, the task is to measure how accurately one can detect 1) whether a test recording is spoken by a Blacklist speaker, and 2) which specific Blacklist speaker was talking.
Multi-task learning (MTL) and attention mechanism have been proven to effectively extract robust acoustic features for various speech-related tasks in noisy environments. In this study, we propose an attention-based MTL (ATM) approach that integrates MTL and the attention-weighting mechanism to simultaneously realize a multi-model learning structure that performs speech enhancement (SE) and speaker identification (SI). The proposed ATM system consists of three parts: SE, SI, and attention-Net (AttNet). The SE part is composed of a long-short-term memory (LSTM) model, and a deep neural network (DNN) model is used to develop the SI and AttNet parts. The overall ATM system first extracts the representative features and then enhances the speech signals in LSTM-SE and specifies speaker identity in DNN-SI. The AttNet computes weights based on DNN-SI to prepare better representative features for LSTM-SE. We tested the proposed ATM system on Taiwan Mandarin hearing in noise test sentences. The evaluation results confirmed that the proposed system can effectively enhance speech quality and intelligibility of a given noisy input. Moreover, the accuracy of the SI can also be notably improved by using the proposed ATM system.
This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to address issues in handling real multi-talker recordings. We then present the details of the components, which include Res2Net-based speaker embedding extractor, conformer-based continuous speech separation with leakage filtering, and a modified DOVER (short for Diarization Output Voting Error Reduction) method for system fusion. We evaluate the systems with the data set provided by VoxSRCchallenge 2020, which contains real-life multi-talker audio collected from YouTube. Our best system achieves 3.71% and 6.23% of the diarization error rate (DER) on development set and evaluation set, respectively, being ranked the 1st at the diarization track of the challenge.
80 - Xiaoyi Qin , Ming Li , Hui Bu 2020
The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independe nt speaker verification from single microphone array, and far-field text-dependent speaker verification from distributed microphone arrays. All three tasks pose a cross-channel challenge to the participants. To simulate the real-life scenario, the enrollment utterances are recorded from close-talk cellphone, while the test utterances are recorded from the far-field microphone arrays. In this paper, we describe the database, the challenge, and the baseline system, which is based on a ResNet-based deep speaker network with cosine similarity scoring. For a given utterance, the speaker embeddings of different channels are equally averaged as the final embedding. The baseline system achieves minDCFs of 0.62, 0.66, and 0.64 and EERs of 6.27%, 6.55%, and 7.18% for task 1, task 2, and task 3, respectively.
Emotional state of a speaker is found to have significant effect in speech production, which can deviate speech from that arising from neutral state. This makes identifying speakers with different emotions a challenging task as generally the speaker models are trained using neutral speech. In this work, we propose to overcome this problem by creation of emotion invariant speaker embedding. We learn an extractor network that maps the test embeddings with different emotions obtained using i-vector based system to an emotion invariant space. The resultant test embeddings thus become emotion invariant and thereby compensate the mismatch between various emotional states. The studies are conducted using four different emotion classes from IEMOCAP database. We obtain an absolute improvement of 2.6% in accuracy for speaker identification studies using emotion invariant speaker embedding against average speaker model based framework with different emotions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا