ﻻ يوجد ملخص باللغة العربية
We present the nucleon form factors and root-mean-square (RMS) radii measured on a (10.8 fm$)^4$ lattice at the physical point. We compute the form factors at small momentum transfer region in $q^2le 0.102$ GeV$^2$ with the standard plateau method choosing four source-sink separation times $t_{rm sep}$ from 0.84 to 1.35 fm to examine the possible excited state contamination. We obtain the electric and magnetic form factors and their RMS radii for not only the isovector channel but also the proton and neutron ones without the disconnected diagram. We also obtain the axial-vector coupling and the axial radius from the axial-vector form factor. We find that these three form factors do not show large $t_{rm sep}$ dependence in our lattice setup. On the other hand, the induced pseudoscalar and pseudoscalar form factors show the clear effects of the excited state contamination, which affect the generalized Goldberger-Treiman relation.
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-s
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
We present the calculation of the $K_{l3}$ form factors with $N_f = 2 + 1$ nonperturbatively $O(a)$-improved Wilson quark action and Iwasaki gauge action at the physical point on a large volume of (10.9 fm)$^3$ at one lattice spacing of $a = 0.085$ f