ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleon electromagnetic form factors using lattice simulations at the physical point

430   0   0.0 ( 0 )
 نشر من قبل Giannis Koutsou
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2$%$ of the connected contribution and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.



قيم البحث

اقرأ أيضاً

We present lattice QCD calculations of nucleon electromagnetic form factors using pion masses $m_pi$ = 149, 202, and 254 MeV and an action with clover-improved Wilson quarks coupled to smeared gauge fields, as used by the Budapest-Marseille-Wuppertal collaboration. Particular attention is given to removal of the effects of excited state contamination by calculation at three source-sink separations and use of the summation and generalized pencil-of-function methods. The combination of calculation at the nearly physical mass $m_pi$ = 149 MeV in a large spatial volume ($m_pi L_s$ = 4.2) and removal of excited state effects yields agreement with experiment for the electric and magnetic form factors $G_E(Q^2)$ and $G_M(Q^2)$ up to $Q^2$ = 0.5 GeV$^2$.
115 - C. Alexandrou 2020
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra nge and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
107 - C. Alexandrou 2006
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l owest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.
We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are non-zero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.
We present results for the nucleon electromagnetic and axial form factors using an N$_f$=2 twisted mass fermion ensemble with pion mass of about 131 MeV. We use multiple sink-source separations to identify excited state contamination. Dipole masses f or the momentum dependence of the form factors are extracted and compared to experiment, as is the nucleon magnetic moment and charge and magnetic radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا