ﻻ يوجد ملخص باللغة العربية
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2$%$ of the connected contribution and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
We present lattice QCD calculations of nucleon electromagnetic form factors using pion masses $m_pi$ = 149, 202, and 254 MeV and an action with clover-improved Wilson quarks coupled to smeared gauge fields, as used by the Budapest-Marseille-Wuppertal
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l
We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In
We present results for the nucleon electromagnetic and axial form factors using an N$_f$=2 twisted mass fermion ensemble with pion mass of about 131 MeV. We use multiple sink-source separations to identify excited state contamination. Dipole masses f