ﻻ يوجد ملخص باللغة العربية
In recent letter [Phys. Rev. Lett {bf 121}, 070601 (2018), arXiv:1802.06554], the speed limit for classical stochastic Markov processes is considered, and a trade-off inequality between the speed of the state transformation and the entropy production is given. In this comment, a more accurate inequality will be presented.
We describe a possible general and simple paradigm in a classical thermal setting for discrete time crystals (DTCs), systems with stable dynamics which is subharmonic to the driving frequency thus breaking discrete time-translational invariance. We c
Quantifying how distinguishable two stochastic processes are lies at the heart of many fields, such as machine learning and quantitative finance. While several measures have been proposed for this task, none have universal applicability and ease of u
We study the spectral properties of classical and quantum Markovian processes that are reset at random times to a specific configuration or state with a reset rate that is independent of the current state of the system. We demonstrate that this simpl
We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of 1D quantum systems, to simulate the time-evolution of non-equilibrium stochastic systems. We describe this method in detail; a systems probab
We reply to Comment by J. Gemmer, L. Knipschild, R. Steinigeweg (arXiv:1712.02128) on our paper Phys. Rev. Lett. 119, 100601 (2017).