ﻻ يوجد ملخص باللغة العربية
We describe a possible general and simple paradigm in a classical thermal setting for discrete time crystals (DTCs), systems with stable dynamics which is subharmonic to the driving frequency thus breaking discrete time-translational invariance. We consider specifically an Ising model in two dimensions, as a prototypical system with a phase transition into stable phases distinguished by a local order parameter, driven by a thermal dynamics and periodically kicked. We show that for a wide parameter range a stable DTC emerges. The phase transition to the DTC state appears to be in the equilibrium 2D Ising class when dynamics is observed stroboscopically. However, we show that the DTC is a genuine non-equilibrium state. More generally, we speculate that systems with thermal phase transitions to multiple competing phases can give rise to DTCs when appropriately driven.
We study seasonal epidemic spreading in a susceptible-infected-removed-susceptible (SIRS) model on smallworld graphs. We derive a mean-field description that accurately captures the salient features of the model, most notably a phase transition betwe
We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of cl
In recent letter [Phys. Rev. Lett {bf 121}, 070601 (2018), arXiv:1802.06554], the speed limit for classical stochastic Markov processes is considered, and a trade-off inequality between the speed of the state transformation and the entropy production
We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of 1D quantum systems, to simulate the time-evolution of non-equilibrium stochastic systems. We describe this method in detail; a systems probab
In this paper we present the concept of description of random processes in complex systems with the discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time