ﻻ يوجد ملخص باللغة العربية
We study the spectral properties of classical and quantum Markovian processes that are reset at random times to a specific configuration or state with a reset rate that is independent of the current state of the system. We demonstrate that this simple reset dynamics causes a uniform shift in the eigenvalues of the Markov generator, excluding the zero mode corresponding to the stationary state, which has the effect of accelerating or even inducing relaxation to a stationary state. Based on this result, we provide expressions for the stationary state and probability current of the reset process in terms of weighted sums over dynamical modes of the reset-free process. We also discuss the effect of resets on processes that display metastability. We illustrate our results with two classical stochastic processes, the totally asymmetric random walk and the one-dimensional Brownian motion, as well as two quantum models: a particle coherently hopping on a chain and the dissipative transverse field Ising model, known to exhibit metastability.
We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of spinless fermions with random hoppings that are induced by a Markovian environment
In this work we consider a stochastic movement process with random resets to the origin followed by a random residence time there before the walker restarts its motion. First, we study the transport properties of the walker, we derive an expression f
In recent letter [Phys. Rev. Lett {bf 121}, 070601 (2018), arXiv:1802.06554], the speed limit for classical stochastic Markov processes is considered, and a trade-off inequality between the speed of the state transformation and the entropy production
Boltzmanns ergodic hypothesis furnishes a possible explanation for the emergence of statistical mechanics in the framework of classical physics. In quantum mechanics, the Eigenstate Thermalization Hypothesis (ETH) is instead generally considered as a
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant