ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Beamforming and Antenna Configurations on Mobility in 5G NR

173   0   0.0 ( 0 )
 نشر من قبل Edgar Ramos
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The future 5G systems are getting closer to be a reality. It is envisioned, indeed, that the roll-out of first 5G network will happen around end of 2018 and beginning of 2019. However, there are still a number of issues and problems that have to be faces and new solutions and methods are needed to solve them. Along these lines, the effects that beamforming and antenna configurations may have on the mobility in 5G New Radio (NR) is still unclear. In fact, with the use of directive antennas and high frequencies (e.g., above 10 GHz), in order to meet the stringent requirements of 5G (e.g., support of 500km/h) it is crucial to understand how the envisioned 5G NR antenna configurations may impact mobility (and thus handovers). In this article, first we will briefly survey mobility enhancements and solution currently under discussion in 3GPP Release 15. In particular, we focus our analysis on the physical layer signals involved in the measurement reporting and the new radio measurement model used in 5G NR to filter the multiple beams typical of directive antenna with a large number of antenna elements. Finally, the critical aspect of mobility identified in the previous sections will be analyzed in more details through the obtained results of an extensive system-level evaluation analysis.

قيم البحث

اقرأ أيضاً

66 - Ke Li , Li Li , Wenpeng Wu 2021
In vehicle-to-everything (V2X) communications, reliability is one of the most important performance metrics in safety-critical applications such as advanced driving, remote driving, and vehicle platooning. In this paper, the link reliability of unica st concurrent transmission in mode 1 (centralized mode) of 5G New Radio based V2X (NR-V2X) is analyzed. The closed-form expression of link reliability for concurrent unicast transmission is firstly derived for a highway scenario under a given interference distance distribution. On this basis, according to the macroscopic configuration of the system, a method to control the number of concurrent transmission nodes is proposed, including the communication range, message packet size, and the number of lanes, etc. The results indicate that the proposed method can maximize the system load on the premise of satisfying the link reliability requirements.
CA-Polar codes have been selected for all control channel communications in 5G NR, but accurate, computationally feasible decoders are still subject to development. Here we report the performance of a recently proposed class of optimally precise Maxi mum Likelihood (ML) decoders, GRAND, that can be used with any block-code. As published theoretical results indicate that GRAND is computationally efficient for short-length, high-rate codes and 5G CA-Polar codes are in that class, here we consider GRANDs utility for decoding them. Simulation results indicate that decoding of 5G CA-Polar codes by GRAND, and a simple soft detection variant, is a practical possibility.
84 - O.Kanhere , S. Goyal , M. Beluri 2021
Joint communication and sensing allows the utilization of common spectral resources for communication and localization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR) (i.e., the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals, conventionally used for communication, this paper shows sub-meter precision localization is possible at millimeter wave frequencies. We derive the geometric dilution of precision of a bistatic radar configuration, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors. We develop a 5G NR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with 5G NR waveforms. The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average, the bistatic configuration can achieve a location accuracy of 10.0 cm over a bistatic range of 25 m, which can be further improved by deploying a multistatic radar configuration.
Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead es pecially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controllers state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controllers state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.
Millimeter-wave (mm-wave) is a promising technique to enhance the network capacity and coverage of next-generation (5G) based on utilizing a great number of available spectrum resources in mobile communication. Improving the 5G network requires enhan cing and employing mm-wave beamforming channel propagation characteristics. To achieve high data rates, system performance remains a challenge given the impact of propagation channels in mm-wave that is insufficient in both path loss, delay spread, and penetration loss. Additional challenges arise due to high cost and energy consumption, which require combining both analog and digital beamforming (hybrid beamforming) to reduce the number of radio frequency (RF) chains. In this paper, the distributed powers in the small cell to suppress path loss by specifying a considerable power and controlling the distributed power to reduce the high cost and energy consumption was proposed. The hybrid beamforming in mm-wave exploits a large bandwidth which reduces the large path loss in Rayleigh fading channel. Also, the trade-off between the energy consumption of RF chains and cost efficiency depends on reducing the number of RF chains and the distributed number of users. This paper finds that hybrid beamforming for massive multiple-input multiple-output (MIMO) systems constitute a promising platform for advancing and capitalizing on 5G networks
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا