ﻻ يوجد ملخص باللغة العربية
Millimeter-wave (mm-wave) is a promising technique to enhance the network capacity and coverage of next-generation (5G) based on utilizing a great number of available spectrum resources in mobile communication. Improving the 5G network requires enhancing and employing mm-wave beamforming channel propagation characteristics. To achieve high data rates, system performance remains a challenge given the impact of propagation channels in mm-wave that is insufficient in both path loss, delay spread, and penetration loss. Additional challenges arise due to high cost and energy consumption, which require combining both analog and digital beamforming (hybrid beamforming) to reduce the number of radio frequency (RF) chains. In this paper, the distributed powers in the small cell to suppress path loss by specifying a considerable power and controlling the distributed power to reduce the high cost and energy consumption was proposed. The hybrid beamforming in mm-wave exploits a large bandwidth which reduces the large path loss in Rayleigh fading channel. Also, the trade-off between the energy consumption of RF chains and cost efficiency depends on reducing the number of RF chains and the distributed number of users. This paper finds that hybrid beamforming for massive multiple-input multiple-output (MIMO) systems constitute a promising platform for advancing and capitalizing on 5G networks
In this work, we investigate hybrid analog-digital beamforming (HBF) architectures for uplink cell-free (CF) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. {We first propose two HBF schemes, namely, decentralized HBF
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront
This paper investigates the hybrid precoding design for millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. The mmWave MIMO system employs partially-connected hybrid precoding architecture with dynamic
In this paper, we investigate the combination of two key enabling technologies for the fifth generation (5G) wireless mobile communication, namely millimeter-wave (mmWave) communications and non-orthogonal multiple access (NOMA). In particular, we co
Millimeter-wave massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace chan