ﻻ يوجد ملخص باللغة العربية
Joint communication and sensing allows the utilization of common spectral resources for communication and localization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR) (i.e., the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals, conventionally used for communication, this paper shows sub-meter precision localization is possible at millimeter wave frequencies. We derive the geometric dilution of precision of a bistatic radar configuration, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors. We develop a 5G NR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with 5G NR waveforms. The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average, the bistatic configuration can achieve a location accuracy of 10.0 cm over a bistatic range of 25 m, which can be further improved by deploying a multistatic radar configuration.
We consider an optimization deployment problem of multistatic radar system (MSRS). Through the antenna placing and the transmitted power allocating, we optimally deploy the MSRS for two goals: 1) the first one is to improve the coverage ratio of surv
This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given area. The Cramer-Rao
CA-Polar codes have been selected for all control channel communications in 5G NR, but accurate, computationally feasible decoders are still subject to development. Here we report the performance of a recently proposed class of optimally precise Maxi
The future 5G systems are getting closer to be a reality. It is envisioned, indeed, that the roll-out of first 5G network will happen around end of 2018 and beginning of 2019. However, there are still a number of issues and problems that have to be f
As the next generation cellular system, 5G network is required to provide a large variety of services for different kinds of terminals, from traditional voice and data services over mobile phones to small packet transmission over massive machine-type