ﻻ يوجد ملخص باللغة العربية
The semi-geostrophic equations are used widely in the modelling of large-scale atmospheric flows. In this note, we prove the global existence of weak solutions of the incompressible semi-geostrophic equations, in geostrophic coordinates, in a three-dimensional domain with a free upper boundary. The proof, based on an energy minimisation argument originally inspired by Cullens Stability Principle, uses optimal transport results as well as the analysis of Hamiltonian ODEs in spaces of probability measures as studied by Ambrosio and Gangbo. We also give a general formulation of Cullens Stability Principle in a rigorous mathematical framework.
The semi-geostrophic system is widely used in the modelling of large-scale atmospheric flows. In this paper, we prove existence of solutions of the incompressible semi-geostrophic equations in a fully three-dimensional domain with a free upper bounda
We give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof
For the generalized surface quasi-geostrophic equation $$left{ begin{aligned} & partial_t theta+ucdot abla theta=0, quad text{in } mathbb{R}^2 times (0,T), & u= abla^perp psi, quad psi = (-Delta)^{-s}theta quad text{in } mathbb{R}^2 times (0,T) , e
In this paper, we construct smooth travelling counter-rotating vortex pairs with circular supports for the generalized surface quasi-geostrophic equation. These vortex pairs are analogues of the Lamb dipoles for the two-dimensional incompressible Eul
The fully compressible semi-geostrophic system is widely used in the modelling of large-scale atmospheric flows. In this paper, we prove rigorously the existence of weak Lagrangian solutions of this system, formulated in the original physical coordin