ﻻ يوجد ملخص باللغة العربية
In this paper, we construct smooth travelling counter-rotating vortex pairs with circular supports for the generalized surface quasi-geostrophic equation. These vortex pairs are analogues of the Lamb dipoles for the two-dimensional incompressible Euler equation. The solutions are obtained by maximization of the energy over some appropriate classes of admissible functions. We establish the uniqueness of maximizers and compactness of maximizing sequences in our variational setting. Using these facts, we further prove the orbital stability of the circular vortex pairs for the gSQG equation.
We are concerned with the existence of periodic travelling-wave solutions for the generalized surface quasi-geostrophic (gSQG) equation(including incompressible Euler equation), known as von Karman vortex street. These solutions are of $C^1$ type, an
For the generalized surface quasi-geostrophic equation $$left{ begin{aligned} & partial_t theta+ucdot abla theta=0, quad text{in } mathbb{R}^2 times (0,T), & u= abla^perp psi, quad psi = (-Delta)^{-s}theta quad text{in } mathbb{R}^2 times (0,T) , e
Consider the surface quasi-geostrophic equation with random diffusion, white in time. We show global existence and uniqueness in high probability for the associated Cauchy problem satisfying a Gevrey type bound. This article is inspired by recent work of Glatt-Holtz and Vicol.
We continue our study of the dynamics of a nearly inviscid periodic surface quasi-geostrophic equation. Here we consider a slightly diffusive stochastic SQG equation of the form begin{equation*} begin{cases} dtheta_t + |D|^{2delta}theta_t,dx + (u_t c
We consider the nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We gives a sufficient condition for existence of traveling waves, and a necessary condition for existence of periodic traveling waves.