ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Learning Framework for Covariant Local Feature Detection

96   0   0.0 ( 0 )
 نشر من قبل Rahul Mitra
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning feature detection has been largely an unexplored area when compared to handcrafted feature detection. Recent learning formulations use the covariant constraint in their loss function to learn covariant detectors. However, just learning from covariant constraint can lead to detection of unstable features. To impart further, stability detectors are trained to extract pre-determined features obtained by hand-crafted detectors. However, in the process they lose the ability to detect novel features. In an attempt to overcome the above limitations, we propose an improved scheme by incorporating covariant constraints in form of triplets with addition to an affine covariant constraint. We show that using these additional constraints one can learn to detect novel and stable features without using pre-determined features for training. Extensive experiments show our model achieves state-of-the-art performance in repeatability score on the well known datasets such as Vgg-Affine, EF, and Webcam.

قيم البحث

اقرأ أيضاً

156 - Shaohui Liu , Yi Wei , Jiwen Lu 2018
In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and th e evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.
Image feature classification is a challenging problem in many computer vision applications, specifically, in the fields of remote sensing, image analysis and pattern recognition. In this paper, a novel Self Organizing Map, termed improved SOM (iSOM), is proposed with the aim of effectively classifying Mammographic images based on their texture feature representation. The main contribution of the iSOM is to introduce a new node structure for the map representation and adopting a learning technique based on Kohonen SOM accordingly. The main idea is to control, in an unsupervised fashion, the weight updating procedure depending on the class reliability of the node, during the weight update time. Experiments held on a real Mammographic images. Results showed high accuracy compared to classical SOM and other state-of-art classifiers.
Most of the Zero-Shot Learning (ZSL) algorithms currently use pre-trained models as their feature extractors, which are usually trained on the ImageNet data set by using deep neural networks. The richness of the feature information embedded in the pr e-trained models can help the ZSL model extract more useful features from its limited training samples. However, sometimes the difference between the training data set of the current ZSL task and the ImageNet data set is too large, which may lead to the use of pre-trained models has no obvious help or even negative impact on the performance of the ZSL model. To solve this problem, this paper proposes a biologically inspired feature enhancement framework for ZSL. Specifically, we design a dual-channel learning framework that uses auxiliary data sets to enhance the feature extractor of the ZSL model and propose a novel method to guide the selection of the auxiliary data sets based on the knowledge of biological taxonomy. Extensive experimental results show that our proposed method can effectively improve the generalization ability of the ZSL model and achieve state-of-the-art results on three benchmark ZSL tasks. We also explained the experimental phenomena through the way of feature visualization.
In this paper we propose an end-to-end swift 3D feature reductionist framework (3DFR) for scene independent change detection. The 3DFR framework consists of three feature streams: a swift 3D feature reductionist stream (AvFeat), a contemporary featur e stream (ConFeat) and a temporal median feature map. These multilateral foreground/background features are further refined through an encoder-decoder network. As a result, the proposed framework not only detects temporal changes but also learns high-level appearance features. Thus, it incorporates the object semantics for effective change detection. Furthermore, the proposed framework is validated through a scene independent evaluation scheme in order to demonstrate the robustness and generalization capability of the network. The performance of the proposed method is evaluated on the benchmark CDnet 2014 dataset. The experimental results show that the proposed 3DFR network outperforms the state-of-the-art approaches.
Image repurposing is a commonly used method for spreading misinformation on social media and online forums, which involves publishing untampered images with modified metadata to create rumors and further propaganda. While manual verification is possi ble, given vast amounts of verified knowledge available on the internet, the increasing prevalence and ease of this form of semantic manipulation call for the development of robust automatic ways of assessing the semantic integrity of multimedia data. In this paper, we present a novel method for image repurposing detection that is based on the real-world adversarial interplay between a bad actor who repurposes images with counterfeit metadata and a watchdog who verifies the semantic consistency between images and their accompanying metadata, where both players have access to a reference dataset of verified content, which they can use to achieve their goals. The proposed method exhibits state-of-the-art performance on location-identity, subject-identity and painting-artist verification, showing its efficacy across a diverse set of scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا