ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Evaluation Framework for Generative Adversarial Networks

157   0   0.0 ( 0 )
 نشر من قبل Shaohui Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.



قيم البحث

اقرأ أيضاً

99 - ZengShun Zhaoa 2021
While most existing segmentation methods usually combined the powerful feature extraction capabilities of CNNs with Conditional Random Fields (CRFs) post-processing, the result always limited by the fault of CRFs . Due to the notoriously slow calcula tion speeds and poor efficiency of CRFs, in recent years, CRFs post-processing has been gradually eliminated. In this paper, an improved Generative Adversarial Networks (GANs) for image semantic segmentation task (semantic segmentation by GANs, Seg-GAN) is proposed to facilitate further segmentation research. In addition, we introduce Convolutional CRFs (ConvCRFs) as an effective improvement solution for the image semantic segmentation task. Towards the goal of differentiating the segmentation results from the ground truth distribution and improving the details of the output images, the proposed discriminator network is specially designed in a full convolutional manner combined with cascaded ConvCRFs. Besides, the adversarial loss aggressively encourages the output image to be close to the distribution of the ground truth. Our method not only learns an end-to-end mapping from input image to corresponding output image, but also learns a loss function to train this mapping. The experiments show that our method achieves better performance than state-of-the-art methods.
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
Image extension models have broad applications in image editing, computational photography and computer graphics. While image inpainting has been extensively studied in the literature, it is challenging to directly apply the state-of-the-art inpainti ng methods to image extension as they tend to generate blurry or repetitive pixels with inconsistent semantics. We introduce semantic conditioning to the discriminator of a generative adversarial network (GAN), and achieve strong results on image extension with coherent semantics and visually pleasing colors and textures. We also show promising results in extreme extensions, such as panorama generation.
107 - Rajhans Singh 2019
The advent of generative adversarial networks (GAN) has enabled new capabilities in synthesis, interpolation, and data augmentation heretofore considered very challenging. However, one of the common assumptions in most GAN architectures is the assump tion of simple parametric latent-space distributions. While easy to implement, a simple latent-space distribution can be problematic for uses such as interpolation. This is due to distributional mismatches when samples are interpolated in the latent space. We present a straightforward formalization of this problem; using basic results from probability theory and off-the-shelf-optimization tools, we develop ways to arrive at appropriate non-parametric priors. The obtained prior exhibits unusual qualitative properties in terms of its shape, and quantitative benefits in terms of lower divergence with its mid-point distribution. We demonstrate that our designed prior helps improve image generation along any Euclidean straight line during interpolation, both qualitatively and quantitatively, without any additional training or architectural modifications. The proposed formulation is quite flexible, paving the way to impose newer constraints on the latent-space statistics.
Due to the unstable nature of minimax game between generator and discriminator, improving the performance of GANs is a challenging task. Recent studies have shown that selected high-quality samples in training improve the performance of GANs. However , sampling approaches which discard samples show limitations in some aspects such as the speed of training and optimality of the networks. In this paper we propose unrealistic feature suppression (UFS) module that keeps high-quality features and suppresses unrealistic features. UFS module keeps the training stability of networks and improves the quality of generated images. We demonstrate the effectiveness of UFS module on various models such as WGAN-GP, SNGAN, and BigGAN. By using UFS module, we achieved better Frechet inception distance and inception score compared to various baseline models. We also visualize how effectively our UFS module suppresses unrealistic features through class activation maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا