ﻻ يوجد ملخص باللغة العربية
Most of the Zero-Shot Learning (ZSL) algorithms currently use pre-trained models as their feature extractors, which are usually trained on the ImageNet data set by using deep neural networks. The richness of the feature information embedded in the pre-trained models can help the ZSL model extract more useful features from its limited training samples. However, sometimes the difference between the training data set of the current ZSL task and the ImageNet data set is too large, which may lead to the use of pre-trained models has no obvious help or even negative impact on the performance of the ZSL model. To solve this problem, this paper proposes a biologically inspired feature enhancement framework for ZSL. Specifically, we design a dual-channel learning framework that uses auxiliary data sets to enhance the feature extractor of the ZSL model and propose a novel method to guide the selection of the auxiliary data sets based on the knowledge of biological taxonomy. Extensive experimental results show that our proposed method can effectively improve the generalization ability of the ZSL model and achieve state-of-the-art results on three benchmark ZSL tasks. We also explained the experimental phenomena through the way of feature visualization.
Modern recognition systems require large amounts of supervision to achieve accuracy. Adapting to new domains requires significant data from experts, which is onerous and can become too expensive. Zero-shot learning requires an annotated set of attrib
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to unseen ones so that the latter can be recognised without any training samples. This is made possible by learning a projection function between a feature space and a semantic spa
Zero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of ZSL, we model the visual learning process of unseen categories with inspiration from the
Zero-Shot Learning (ZSL) targets at recognizing unseen categories by leveraging auxiliary information, such as attribute embedding. Despite the encouraging results achieved, prior ZSL approaches focus on improving the discriminant power of seen-class
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models