ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological field theory approach to intermediate statistics

85   0   0.0 ( 0 )
 نشر من قبل Ward Vleeshouwers
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Random matrix models provide a phenomenological description of a vast variety of physical phenomena. Prominent examples include the eigenvalue statistics of quantum (chaotic) systems, which are conveniently characterized using the spectral form factor (SFF). Here, we calculate the SFF of unitary matrix ensembles of infinite order with the weight function satisfying the assumptions of Szegos limit theorem. We then consider a parameter-dependent critical ensemble which has intermediate statistics characteristic of ergodic-to-nonergodic transitions such as the Anderson localization transition. This same ensemble is the matrix model of $U(N)$ Chern-Simons theory on $S^3$, and the SFF of this ensemble is proportional to the HOMFLY invariant of $(2n,2)$-torus links with one component in the fundamental and one in the antifundamental representation. This is one of a large class of ensembles arising from topological field and string theories which exhibit intermediate statistics. Indeed, the absence of a local order parameter suggests that it is natural to characterize ergodic-to-nonergodic transitions using topological tools, such as we have done here.



قيم البحث

اقرأ أيضاً

Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases, e.g., quasi-particle braiding statistics, chiral central charge and even provides us a deep insight for the nature of topological phase transitions. Recently, topological phases of quantum matter are also intensively studied in $3+1$D and it has been shown that loop like excitation obeys the so-called three-loop-braiding statistics. In this paper, we will try to establish a TQFT framework to understand the quantum statistics of particle and loop like excitation in $3+1$D. We will focus on Abelian topological phases for simplicity, however, the general framework developed here is not limited to Abelian topological phases.
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of top ological phases has been extended to 3D and it has been proposed that loop-like extensive objects can also carry fractional statistics. In this work, we systematically study the so-called three-loop braiding statistics for loop-like excitations for 3D fermionic topological phases. Most surprisingly, we discovered new types of non-Abelian three-loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic systems with fermionic particles). The simplest example of such non-Abelian braiding statistics can be realized in interacting fermionic systems with a gauge group $mathbb{Z}_2 times mathbb{Z}_8$ or $mathbb{Z}_4 times mathbb{Z}_4$, and the physical origin of non-Abelian statistics can be viewed as attaching an open Majorana chain onto a pair of linked loops, which will naturally reduce to the well known Ising non-Abelian statistics via the standard dimension reduction scheme. Moreover, due to the correspondence between gauge theories with fermionic particles and classifying fermionic symmetry-protected topological (FSPT) phases with unitary symmetries, our study also give rise to an alternative way to classify FSPT phases with unitary symmetries. We further compare the classification results for FSPT phases with arbitrary Abelian total symmetry $G^f$ and find systematical agreement with previous studies using other methods. We believe that the proposed framework of understanding three-loop braiding statistics (including both Abelian and non-Abelian cases) in interacting fermion systems applies for generic fermonic topological phases in 3D.
We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs correspond to turning on particular gapping interactions between the edge modes across the interface. However, in studying entanglement in the continuum Chern-Simons description, we must confront the problem of non-factorization of the Hilbert space, which is a standard property of gauge theories. We carefully define the entanglement entropy by using an extended Hilbert space construction directly in the continuum theory. We show how a given TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence compute the resulting entanglement entropy. We find that the sub-leading correction to the area law remains universal, but depends on the choice of topological boundary conditions. This agrees with the microscopic calculation of cite{Cano:2014pya}. Additionally, we provide a replica path integral calculation for the entropy. In the case when the topological phases across the interface are taken to be identical, our construction gives a novel explanation of the equivalence between the left-right entanglement of (1+1)d Ishibashi states and the spatial entanglement of (2+1)d topological phases.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
168 - P. Lecheminant , P. Azaria , 2008
The physical properties of arbitrary half-integer spins F = N - 1/2 fermionic cold atoms loaded into a one-dimensional optical lattice are investigated by means of a conformal field theory approach. We show that for attractive interactions two differ ent superfluid phases emerge for F ge 3/2: A BCS pairing phase, and a molecular superfluid phase which is formed from bound-states made of 2N fermions. In the low-energy approach, the competition between these instabilities and charge-density waves is described in terms of Z_N parafermionic degrees of freedom. The quantum phase transition for F=3/2,5/2 is universal and shown to belong to the Ising and three-state Potts universality classes respectively. For a filling of one atom per site, a Mott transition occurs and the nature of the possible Mott-insulating phases are determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا