ﻻ يوجد ملخص باللغة العربية
Random matrix models provide a phenomenological description of a vast variety of physical phenomena. Prominent examples include the eigenvalue statistics of quantum (chaotic) systems, which are conveniently characterized using the spectral form factor (SFF). Here, we calculate the SFF of unitary matrix ensembles of infinite order with the weight function satisfying the assumptions of Szegos limit theorem. We then consider a parameter-dependent critical ensemble which has intermediate statistics characteristic of ergodic-to-nonergodic transitions such as the Anderson localization transition. This same ensemble is the matrix model of $U(N)$ Chern-Simons theory on $S^3$, and the SFF of this ensemble is proportional to the HOMFLY invariant of $(2n,2)$-torus links with one component in the fundamental and one in the antifundamental representation. This is one of a large class of ensembles arising from topological field and string theories which exhibit intermediate statistics. Indeed, the absence of a local order parameter suggests that it is natural to characterize ergodic-to-nonergodic transitions using topological tools, such as we have done here.
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases,
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of top
We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation.
The physical properties of arbitrary half-integer spins F = N - 1/2 fermionic cold atoms loaded into a one-dimensional optical lattice are investigated by means of a conformal field theory approach. We show that for attractive interactions two differ