ﻻ يوجد ملخص باللغة العربية
$k$-core decomposition is widely used to identify the center of a large network, it is a pruning process in which the nodes with degrees less than $k$ are recursively removed. Although the simplicity and effectiveness of this method facilitate its implementation on broad applications across many scientific fields, it produces few analytical results. We here simplify the existing theoretical framework to a simple iterative relationship and obtain the exact analytical solutions of the $k$-core pruning process on large uncorrelated networks. From these solutions we obtain such statistical properties as the degree distribution and the size of the remaining subgraph in each of the pruning steps. Our theoretical results resolve the long-lasting puzzle of the $k$-core pruning dynamics and provide an intuitive description of the dynamic process.
Multi-layer networks or multiplex networks are generally considered as the networks that have the same set of vertices but different types of edges. Multi-layer networks are especially useful when describing the systems with several kinds of interact
We induce the NonBacktracking Expansion Branch method to analyze the k-core pruning process on the monopartite graph G which does not contain any self-loop or multi-edge. Different from the traditional approaches like the generating functions or the
We apply moment methods to obtaining an approximate analytical solution to Knudsen layers. Based on the hyperbolic regularized moment system for the Boltzmann equation with the Shakhov collision model, we derive a linearized hyperbolic moment system
In this paper we present a framework which provides an analytical (i.e., infinitely differentiable) transformation between spatial coordinates and orbital elements for the solution of the gravitational two-body problem. The formalism omits all singul
Multiplex networks are convenient mathematical representations for many real-world -- biological, social, and technological -- systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointe