ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-temperature coherent control of implanted defect spins in silicon carbide

161   0   0.0 ( 0 )
 نشر من قبل Feifei Yan PhD candidate
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, vacancy-related spin defects in silicon carbide (SiC) have been demonstrated to be potentially suitable for versatile quantum interface building and scalable quantum network construction. Significant efforts have been undertaken to identify spin systems in SiC and to extend their quantum capabilities using large-scale growth and advanced nanofabrication methods. Here we demonstrated a type of spin defect in the 4H polytype of SiC generated via hydrogen ion implantation with high-temperature post-annealing, which is different from any known defects. These spin defects can be optically addressed and coherently controlled even at room temperature, and their fluorescence spectrum and optically detected magnetic resonance spectra are different from those of any previously discovered defects. Moreover, the generation of these defects can be well controlled by optimizing the annealing temperature after implantation. These defects demonstrate high thermal stability with coherently controlled electron spins, facilitating their application in quantum sensing and masers under harsh conditions.



قيم البحث

اقرأ أيضاً

Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins i n silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration six-fold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature and the coherence time T2 can be reached to around 17.1 {mu}s. Furthermore, investigation of fluorescence properties of single NV centers shows that they are room temperature photostable single photon sources at telecom range. Taking advantages of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.
Great efforts have been made to the investigation of defects in silicon carbide for their attractive optical and spin properties. However, most of the researches are implemented at low and room temperature. Little is known about the spin coherent pro perty at high temperature. Here, we experimentally demonstrate coherent control of divacancy defect spins in silicon carbide above 550 K. The spin properties of defects ranging from room temperature to 600 K are investigated, in which the zero-field-splitting is found to have a polynomial temperature dependence and the spin coherence time decreases as the temperature increases. Moreover, as an example of application, we demonstrate a thermal sensing using the Ramsey method at about 450 K. Our experimental results would be useful for the investigation of high temperature properties of defect spins and silicon carbide-based broad-temperature range quantum sensing.
Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond, or individual phosphorous dopants in silicon have shown spectacular progress but either miss established nanotechnology or an efficient sp in-photon interface. Silicon carbide (SiC) combines the strength of both systems: It has a large bandgap with deep defects and benefits from mature fabrication techniques. Here we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence time under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.
110 - T. Gaebel , M. Domhan , I. Popa 2006
Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state system s, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are potentially the most important, because they offer very long phase memories, sometimes even at room temperature. Although precise control of spins is well established in conventional magnetic resonance3, 4, existing techniques usually do not allow the readout of single spins because of limited sensitivity. In this paper, we explore dipolar magnetic coupling between two single defects in diamond (nitrogen-vacancy and nitrogen) using optical readout of the single nitrogen-vacancy spin states. Long phase memory combined with a defect separation of a few lattice spacings allow us to explore the strong magnetic coupling regime. As the two-defect system was well-isolated from other defects, the long phase memory times of the single spins was not diminished, despite the fact that dipolar interactions are usually seen as undesirable sources of decoherence. A coherent superposition of spin pair quantum states was achieved. The dipolar coupling was used to transfer spin polarisation from a nitrogen-vacancy centre spin to a nitrogen spin, with optical pumping of a nitrogen-vacancy centre leading to efficient initialisation. At the level anticrossing efficient nuclear spin polarisation was achieved. Our results demonstrate an important step towards controlled spin coupling and multi-particle entanglement in the solid state.
We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $ pm$1 and $pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا