ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical coherent population trapping with defect spin ensembles in silicon carbide

209   0   0.0 ( 0 )
 نشر من قبل Caspar van der Wal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addressing of spin states with the zero-phonon-line transitions. Our magneto-spectroscopy results identify the spin $S=1$ structure of the ground and excited state, and a role for decay via intersystem crossing. We use these results for demonstrating coherent population trapping of spin states with divacancy ensembles that have particular orientations in the SiC crystal.



قيم البحث

اقرأ أيضاً

Spin defects in silicon carbide (SiC) with mature wafer-scale fabrication and micro/nano-processing technologies have recently drawn considerable attention. Although room temperature single-spin manipulation of colour centres in SiC has been demonstr ated, the typically detected contrast is less than 2%, and the photon count rate is also low. Here, we present the coherent manipulation of single divacancy spins in 4H-SiC with a high readout contrast (-30%) and a high photon count rate (150 kilo counts per second) under ambient conditions, which are competitive with the nitrogen-vacancy (NV) centres in diamond. Coupling between a single defect spin and a nearby nuclear spin is also observed. We further provide a theoretical explanation for the high readout contrast by analysing the defect levels and decay paths. Since the high readout contrast is of utmost importance in many applications of quantum technologies, this work might open a new territory for SiC-based quantum devices with many advanced properties of the host material.
We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-freque ncy electric fields, and the characterization of defect spin multiplicity. While we control defects in SiC, these methods apply to spin systems in many semiconductors, including the nitrogen-vacancy center in diamond. Electrically driven spin resonance offers a viable route towards scalable quantum control of electron spins in a dense array.
We discuss the fine structure and spin dynamics of spin-3/2 centers associated with silicon vacancies in silicon carbide. The centers have optically addressable spin states which makes them highly promising for quantum technologies. The fine structur e of the spin centers turns out to be highly sensitive to mechanical pressure, external magnetic and electric fields, temperature variation, etc., which can be utilized for efficient room-temperature sensing, particularly by purely optical means or through the optically detected magnetic resonance. We discuss the experimental achievements in magnetometry and thermometry based on the spin state mixing at level anticrossings in an external magnetic field and the underlying microscopic mechanisms. We also discuss spin fluctuations in an ensemble of vacancies caused by interaction with environment.
The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because the electronic states of SiC defects can have sharp optical and spin transitions, they are inc reasingly recognized as a valuable resource for quantum-information and nanoscale-sensing applications. Here, we show that individual electron spin states in highly purified monocrystalline 4H-SiC can be isolated and coherently controlled. Bound to neutral divacancy defects, these states exhibit exceptionally long ensemble Hahn-echo spin coherence, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route to wafer-scale quantum technologies.
126 - B. Michaelis , C. Emary , 2005
We present a fully electronic analogue of coherent population trapping in quantum optics, based on destructive interference of single-electron tunneling between three quantum dots. A large bias voltage plays the role of the laser illumination. The tr apped state is a coherent superposition of the electronic charge in two of these quantum dots, so it is destabilized as a result of decoherence by coupling to external charges. The resulting current I through the device depends on the ratio of the decoherence rate Gamma_phi and the tunneling rates. For Gamma_phi --> 0 one has simply I=e Gamma_phi. With increasing Gamma_phi the current peaks at the inverse trapping time. The direct relation between I and Gamma_phi can serve as a means of measuring the coherence time of a charge qubit in a transport experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا