ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-temporal coupling of attosecond pulses

121   0   0.0 ( 0 )
 نشر من قبل Hampus Wikmark
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme ultraviolet range and bandwidths exceeding tens of eV. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely-used approximation consisting in writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argumentation uses a simple analytical model based on Gaussian optics, numerical propagation calculations and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high quality focusing while retaining the broadband/ultrashort characteristics of the radiation.



قيم البحث

اقرأ أيضاً

249 - Michael Chini , Kun Zhao , 2013
The generation of the shortest isolated attosecond pulses requires both broad spectral bandwidth and control of the spectral phase. Rapid progress has been made in both aspects, leading to the generation of the world-record-shortest 67 as light pulse s in 2012, and broadband attosecond continua covering a wide range of extreme ultraviolet and soft x-ray wavelengths. Such pulses have been successfully applied in photoelectron/photoion spectroscopy and the recently developed attosecond transient absorption spectroscopy to study electron dynamics in matter. In this Review, we discuss the significant recent advancement in the generation, characterization, and application of ultrabroadband isolated attosecond pulses with spectral bandwidth comparable to the central frequency, which can in principle be compressed to a single optical cycle.
The generation of coherent light pulses in the extreme ultraviolet (XUV) spectral region with attosecond pulse durations constitutes the foundation of the field of attosecond science. Twenty years after the first demonstration of isolated attosecond pulses, they continue to be a unique tool enabling the observation and control of electron dynamics in atoms, molecules and solids. It has long been identified that an increase in the repetition rate of attosecond light sources is necessary for many applications in atomic and molecular physics, surface science, and imaging. Although high harmonic generation (HHG) at repetition rates exceeding 100 kHz, showing a continuum in the cut-off region of the XUV spectrum was already demonstrated in 2013, the number of photons per pulse was insufficient to perform pulse characterisation via attosecond streaking, let alone to perform a pump-probe experiment. Here we report on the generation and full characterisation of XUV attosecond pulses via HHG driven by near-single-cycle pulses at a repetition rate of 100 kHz. The high number of 10^6 XUV photons per pulse on target enables attosecond electron streaking experiments through which the XUV pulses are determined to consist of a dominant single attosecond pulse. These results open the door for attosecond pump-probe spectroscopy studies at a repetition rate one or two orders of magnitude above current implementations.
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest attosecond (as) pulses have been produced only in the extreme ultraviolet (EUV) region o f the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we use advanced experiment and theory to demonstrate a remarkable convergence of physics: when mid-infrared lasers are used to drive the high harmonic generation process, the conditions for optimal bright soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2 mu m driving lasers. Harnessing this realization, we demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, that emerge as linearly chirped 300 as pulses with a transform limit of 35 as. Most surprisingly, we find that in contrast to as pulse generation in the EUV, long-duration, multi-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright attosecond pulses of electromagnetic radiation throughout the soft X ray region of the spectrum.
We report the use of prism-assisted side-coupling to investigate the spatio-temporal dynamics of photoionization in an Ar-filled hollow-core photonic crystal fiber. By launching four different LP core modes we are able to probe temporal and spatial c hanges in the modal refractive index on timescales from a few hundred picoseconds to several hundred microseconds after the ionization event. We experimentally analyze the underlying gas density waves and find good agreement with quantitative and qualitative hydrodynamic predictions. Moreover, we observe periodic modulations in the MHz-range lasting for a few microseconds, indicating nanometer-scale vibrations of the fiber structure, driven by gas density waves.
293 - T. Ruchon , C. P. Hauri , K. Varju 2007
We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significan tly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of self-compressed attosecond pulses. We show this effect experimentally, using long argon-filled gas cells as generating medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا