ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of Bright Isolated Attosecond Soft X-Ray Pulses Driven by Multi-Cycle Mid-Infrared Lasers

136   0   0.0 ( 0 )
 نشر من قبل Ming-Chang Chen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest attosecond (as) pulses have been produced only in the extreme ultraviolet (EUV) region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we use advanced experiment and theory to demonstrate a remarkable convergence of physics: when mid-infrared lasers are used to drive the high harmonic generation process, the conditions for optimal bright soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2 mu m driving lasers. Harnessing this realization, we demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, that emerge as linearly chirped 300 as pulses with a transform limit of 35 as. Most surprisingly, we find that in contrast to as pulse generation in the EUV, long-duration, multi-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright attosecond pulses of electromagnetic radiation throughout the soft X ray region of the spectrum.



قيم البحث

اقرأ أيضاً

231 - Michael Chini , Kun Zhao , 2013
The generation of the shortest isolated attosecond pulses requires both broad spectral bandwidth and control of the spectral phase. Rapid progress has been made in both aspects, leading to the generation of the world-record-shortest 67 as light pulse s in 2012, and broadband attosecond continua covering a wide range of extreme ultraviolet and soft x-ray wavelengths. Such pulses have been successfully applied in photoelectron/photoion spectroscopy and the recently developed attosecond transient absorption spectroscopy to study electron dynamics in matter. In this Review, we discuss the significant recent advancement in the generation, characterization, and application of ultrabroadband isolated attosecond pulses with spectral bandwidth comparable to the central frequency, which can in principle be compressed to a single optical cycle.
170 - Bing Xue , Yuuki Tamaru , Yuxi Fu 2021
The bottleneck for an attosecond science experiment is concluded to be the lack of a high-peak-power isolated attosecond pulse source. Therefore, currently, generating an intense attosecond pulse would be one of the highest priority goals. In this pa per, we review a TW-class parallel three-channel waveform synthesizer for generating a gigawatt-scale soft-x-ray isolated attosecond pulse (IAP) using high-order harmonics generation (HHG). Simultaneously, using several stabilization methods, namely, the low-repetition-rate laser carrier-envelope phase stabilization, Mach-Zehnder interferometer, balanced optical cross-correlator, and beam-pointing stabilizer, we demonstrate a stable 50-mJ three-channel optical-waveform synthesizer with a peak power at the multi-TW level. This optical-waveform synthesizer is capable of creating a stable intense optical field for generating an intense continuum harmonic beam thanks to the successful stabilization of all the parameters. Furthermore, the precision control of shot-to-shot reproducible synthesized waveforms is achieved. Through the HHG process employing a loose-focusing geometry, an intense shot-to-shot stable supercontinuum (50-70 eV) is generated in an argon gas cell. This continuum spectrum supports an IAP with a transform-limited duration of 170 as and a submicrojoule pulse energy, which allows the generation of a GW-scale IAP. Another supercontinuum in the soft-x-ray region with higher photon energy of approximately 100-130 eV is also generated in neon gas from the synthesizer. The transform-limited pulse duration is 106 as. According to this work, the enhancement of HHG output through optimized waveform synthesis is experimentally proved. The high-energy multicycle pulse with 10-Hz repetition rate is proved to have the same controllability for optimized waveform synthesis for HHG as few- or subcycle pulses from a 1-kHz laser.
The generation of coherent light pulses in the extreme ultraviolet (XUV) spectral region with attosecond pulse durations constitutes the foundation of the field of attosecond science. Twenty years after the first demonstration of isolated attosecond pulses, they continue to be a unique tool enabling the observation and control of electron dynamics in atoms, molecules and solids. It has long been identified that an increase in the repetition rate of attosecond light sources is necessary for many applications in atomic and molecular physics, surface science, and imaging. Although high harmonic generation (HHG) at repetition rates exceeding 100 kHz, showing a continuum in the cut-off region of the XUV spectrum was already demonstrated in 2013, the number of photons per pulse was insufficient to perform pulse characterisation via attosecond streaking, let alone to perform a pump-probe experiment. Here we report on the generation and full characterisation of XUV attosecond pulses via HHG driven by near-single-cycle pulses at a repetition rate of 100 kHz. The high number of 10^6 XUV photons per pulse on target enables attosecond electron streaking experiments through which the XUV pulses are determined to consist of a dominant single attosecond pulse. These results open the door for attosecond pump-probe spectroscopy studies at a repetition rate one or two orders of magnitude above current implementations.
We present experimental results showing the appearance of a near-continuum in the high-order harmonic generation (HHG) spectra of atomic and molecular species as the driving laser intensity of an infrared pulse increases. Detailed macroscopic simulat ions reveal that these near-continuum spectra are capable of producing IAPs in the far field if a proper spatial filter is applied. Further, our simulations show that the near-continuum spectra and the IAPs are a product of strong temporal and spatial reshaping (blue shift and defocusing) of the driving field. This offers a possibility of producing IAPs with a broad range of photon energy, including plateau harmonics, by mid-IR laser pulses even without carrier-envelope phase stabilization.
Sources of intense, ultra-short electromagnetic pulses enable applications such as attosecond pulse generation, control of electron motion in solids and the observation of reaction dynamics at the electronic level. For such applications both high-int ensity and carrier envelope phase~(CEP) tunability are beneficial, yet hard to obtain with current methods. In this work we present a new scheme for generation of isolated CEP-tunable intense sub-cycle pulses with central frequencies that range from the midinfrared to the ultraviolet. It utilizes an intense laser pulse which drives a wake in a plasma, co-propagating with a long-wavelength seed pulse. The moving electron density spike of the wake amplifies the seed and forms a sub-cycle pulse. Controlling the CEP of the seed pulse, or the delay between driver and seed leads to CEP-tunability, while frequency tunability can be achieved by adjusting the laser and plasma parameters. Our 2D and 3D Particle-In-Cell simulations predict laser-to-sub-cycle-pulse conversion efficiencies up to 1%, resulting in relativistically intense sub-cycle pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا