ﻻ يوجد ملخص باللغة العربية
A paper of U. First & Z. Reichstein proves that if $R$ is a commutative ring of dimension $d$, then any Azumaya algebra $A$ over $R$ can be generated as an algebra by $d+2$ elements, by constructing such a generating set, but they do not prove that this number of generators is required, or even that for an arbitrarily large $r$ that there exists an Azumaya algebra requiring $r$ generators. In this paper, for any given fixed $nge 2$, we produce examples of a base ring $R$ of dimension $d$ and an Azumaya algebra of degree $n$ over $R$ that requires $r(d,n) = lfloor frac{d}{2n-2} rfloor + 2$ generators. While $r(d,n) < d+2$ in general, we at least show that there is no uniform upper bound on the number of generators required for Azumaya algebras. The method of proof is to consider certain varieties $B^r_n$ that are universal varieties for degree-$n$ Azumaya algebras equipped with a set of $r$ generators, and specifically we show that a natural map on Chow group $CH^{(r-1)(n-1)}_{PGL_n} to CH^{(r-1)(n-1)}(B^r_n)$ fails to be injective, which is to say that the map fails to be injective in the first dimension in which it possibly could fail. This implies that for a sufficiently generic rank-$n$ Azumaya algebra, there is a characteristic class obstruction to generation by $r$ elements.
Let $mathfrak{sp}_{2n}(mathbb {K})$ be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element $X in mathfrak{sp}_{2n}(mathbb {K})$ there exists a nilpotent element $Y in m
Consider the special linear Lie algebra $mathfrak{sl}_n(mathbb {K})$ over an infinite field of characteristic different from $2$. We prove that for any nonzero nilpotent $X$ there exists a nilpotent $Y$ such that the matrices $X$ and $Y$ generate the Lie algebra $mathfrak{sl}_n(mathbb {K})$.
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper we obtain necessary and sufficient conditions for a given algebra $A$ to be an evolution algebr
Let A be an associative algebra with identity over a field k. An atomistic subsemiring R of the lattice of subspaces of A, endowed with the natural product, is a subsemiring which is a closed atomistic sublattice. When R has no zero divisors, the set