ﻻ يوجد ملخص باللغة العربية
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. We present upper and lower bounds on the minimum nu
There is a remarkable connection between the clique number and the Lagrangian of a 2-graph proved by Motzkin and Straus in 1965. It is useful in practice if similar results hold for hypergraphs. However the obvious generalization of Motzkin and Strau
Determine the size of $r$-graphs with given graph parameters is an interesting problem. Chvatal and Hanson (JCTB, 1976) gave a tight upper bound of the size of 2-graphs with restricted maximum degree and matching number; Khare (DM, 2014) studied the
A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. The tripartite-circle crossing number of a triparti
We prove that one can count in polynomial time the number of minimal transversals of $beta$-acyclic hypergraphs. In consequence, we can count in polynomial time the number of minimal dominating sets of strongly chordal graphs, continuing the line of