ﻻ يوجد ملخص باللغة العربية
Consider the special linear Lie algebra $mathfrak{sl}_n(mathbb {K})$ over an infinite field of characteristic different from $2$. We prove that for any nonzero nilpotent $X$ there exists a nilpotent $Y$ such that the matrices $X$ and $Y$ generate the Lie algebra $mathfrak{sl}_n(mathbb {K})$.
Let $mathfrak{sp}_{2n}(mathbb {K})$ be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element $X in mathfrak{sp}_{2n}(mathbb {K})$ there exists a nilpotent element $Y in m
We describe some examples of non abelian nilpotent Lie algebras which are not algebraic.
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra
In this paper, we study the cup products and Betti numbers over cohomology superspaces of two-step nilpotent Lie superalgebras with coefficients in the adjoint modules over an algebraically closed field of characteristic zero. As an application, we p
We prove an analog of the Ado theorem - the existence of a finite-dimensional faithful representation - for a certain kind of finite-dimensional nilpotent Hom-Lie algebras.