ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium Brownian motion beyond the effective temperature

241   0   0.0 ( 0 )
 نشر من قبل Alessandro Sarracino
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einsteins relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own effective temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einsteins relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.



قيم البحث

اقرأ أيضاً

One goal of this paper is to discuss the classical definition of granular temperature as an extension of its thermodynamic equivalent and a useful concept which provides an important characterization of fluidized granular matter. Following a review o f some basic concepts and techniques (with emphasis on fundamental issues) we present new results for a system that can exhibit strong violations of equipartition, yet is amenable to description by classical granular hydrodynamics, namely a binary granular gas mixture. A second goal of this article is to present a result that pertains to dense granular and molecular solids alike, namely the existence of a correction to the elastic energy which is related to the heat flux in the equations of continuum mechanics. The latter is of the same (second) order in the strain as the elastic energy. Although recent definitions of temperatures for granular matter, glasses and other disordered many-body systems are not within the scope of this article we do make several general comments on this subject in the closing section.
139 - M. A. Rajabpour 2009
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type. In addition we find the winding number distribution of fractal time process, i.e., time fractional Fokker-Planck equation, in the presence of finite size winding center.
As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of fin ite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
Pyrochlore magnets are candidates for spin-ice behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare earth) supported by magnetothermal measurements on selected systems. By considering long ranged dipole -dipole as well as short-ranged superexchange interactions we get three distinct behaviours: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, (iii) a partially ordered state with a sharp transition to paramagnetism. Thus these competing interactions can induce behaviour very different from conventional ``spin ice. Closely corresponding behaviour is seen in the real compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been discussed before, rather than (ii) as suggested earlier.
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Ca simir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا