ﻻ يوجد ملخص باللغة العربية
We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.
We exhibit a range of $ell ^{p}(mathbb{Z}^d)$-improving properties for the discrete spherical maximal average in every dimension $dgeq 5$. The strategy used to show these improving properties is then adapted to establish sparse bounds, which extend t
We prove an expanded range of $ell ^{p}(mathbb{Z}^d)$-improving properties and sparse bounds for discrete spherical maximal means in every dimension $dgeq 6$. Essential elements of the proofs are bounds for high exponent averages of Ramanujan and restricted Kloosterman sums.
We prove new $ell ^{p} (mathbb Z ^{d})$ bounds for discrete spherical averages in dimensions $ d geq 5$. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In par
Consider the discrete cubic Hilbert transform defined on finitely supported functions $f$ on $mathbb{Z}$ by begin{eqnarray*} H_3f(n) = sum_{m ot = 0} frac{f(n- m^3)}{m}. end{eqnarray*} We prove that there exists $r <2$ and universal constant $
We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:mathbb{Z}^dto mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible