ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Bounds for the Discrete Cubic Hilbert Transform

146   0   0.0 ( 0 )
 نشر من قبل Michael T. Lacey
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider the discrete cubic Hilbert transform defined on finitely supported functions $f$ on $mathbb{Z}$ by begin{eqnarray*} H_3f(n) = sum_{m ot = 0} frac{f(n- m^3)}{m}. end{eqnarray*} We prove that there exists $r <2$ and universal constant $C$ such that for all finitely supported $f,g$ on $mathbb{Z}$ there exists an $(r,r)$-sparse form ${Lambda}_{r,r}$ for which begin{eqnarray*} left| langle H_3f, g rangle right| leq C {Lambda}_{r,r} (f,g). end{eqnarray*} This is the first result of this type concerning discrete harmonic analytic operators. It immediately implies some weighted inequalities, which are also new in this setting.

قيم البحث

اقرأ أيضاً

251 - Robert Kesler , Dario Mena 2017
Consider the discrete quadratic phase Hilbert Transform acting on $ell^{2}$ finitely supported functions $$ H^{alpha} f(n) : = sum_{m eq 0} frac{e^{2 pi ialpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $alpha in mathbb{T}$, there is a sparse bound for the bilinear form $langle H^{alpha} f , g rangle$. The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Holder classes.
Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a u nique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f in H^1(I)$, we show that $$ |Hf|_{L^2(J)} geq c_1 exp{left(-c_2 frac{|f_x|_{L^2(I)}}{|f|_{L^2(I)}}right)} | f |_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $|f_x|_{L^2(I)}$ can be replaced by $|f_x|_{L^1(I)}$.
Let $W$ denote a matrix $A_2$ weight. In this paper, we implement a scalar argument using the square function to deduce square-function type results for vector-valued functions in $L^2(mathbb{R},mathbb{C}^d)$. These results are then used to study the boundedness of the Hilbert transform and Haar multipliers on $L^2(mathbb{R},mathbb{C}^d)$. Our proof shortens the original argument by Treil and Volberg and improves the dependence on the $A_2$ characteristic. In particular, we prove that the Hilbert transform and Haar multipliers map $L^2(mathbb{R},W,mathbb{C}^d)$ to itself with dependence on on the $A_2$ characteristic at most $[W]_{A_2}^{frac{3}{2}} log [W]_{A_2}$.
We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.
We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:mathbb{Z}^dto mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible polynomial mappings stemming from a combination of interacting geometric, analytic and number-theoretic obstacles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا