ﻻ يوجد ملخص باللغة العربية
Consider the discrete cubic Hilbert transform defined on finitely supported functions $f$ on $mathbb{Z}$ by begin{eqnarray*} H_3f(n) = sum_{m ot = 0} frac{f(n- m^3)}{m}. end{eqnarray*} We prove that there exists $r <2$ and universal constant $C$ such that for all finitely supported $f,g$ on $mathbb{Z}$ there exists an $(r,r)$-sparse form ${Lambda}_{r,r}$ for which begin{eqnarray*} left| langle H_3f, g rangle right| leq C {Lambda}_{r,r} (f,g). end{eqnarray*} This is the first result of this type concerning discrete harmonic analytic operators. It immediately implies some weighted inequalities, which are also new in this setting.
Consider the discrete quadratic phase Hilbert Transform acting on $ell^{2}$ finitely supported functions $$ H^{alpha} f(n) : = sum_{m eq 0} frac{e^{2 pi ialpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $alpha in mathbb{T}$, there is a sparse
Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a u
Let $W$ denote a matrix $A_2$ weight. In this paper, we implement a scalar argument using the square function to deduce square-function type results for vector-valued functions in $L^2(mathbb{R},mathbb{C}^d)$. These results are then used to study the
We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and
We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:mathbb{Z}^dto mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible