ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films

134   0   0.0 ( 0 )
 نشر من قبل Xionghua Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature (TV ), of high-quality epitaxial Fe3O4 thin films grown on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We observed rapid change of magnetization, coercivity, and remanence ratio at TV , which are consistent with the behaviors of resistivity versus temperature [r{ho}(T )] curves for the different thin films. In particular, we found quite different magnetic behaviors for the thin films onMgOfrom those onMAOand STO, inwhich the domain size and the strain state play very important roles. The coercivity is mainly determined by the domain size but the demagnetization process is mainly dependent on the strain state. Furthermore, we observed a reversal of remanence ratio at TV with thickness for the thin films grown on MgO: from a rapid enhancement for 40-nm- to a sharp drop for 200-nm-thick film, and the critical thickness is about 80 nm. Finally, we found an obvious hysteretic loop of coercivity (or remanence ratio) with temperature around TV , corresponding to the hysteretic loop of the r{ho}(T ) curve, in Fe3O4 thin film grown on MgO.



قيم البحث

اقرأ أيضاً

132 - X. H. Liu , W. Liu , Z. M. Dai 2018
We report a direct observation of magnetic domain evolution near the Verwey transition (TV) in Fe3O4 films. We found the stripe domains in the Fe3O4/Mg2TiO4 film while the irregular domains in the Fe3O4/MgO film and the similar characters of magnetic domains in the vicinity of TV for both samples: the bigger domain size and the higher contrast of the phase signal below TV and the more disordered domain images at TV. Remarkably, the magnetic behaviors can be well understood and the domain-wall energy and the demagnetizing energy can be calculated from the magnetic domains near TV in the Fe3O4/Mg2TiO4 film. Our work presents a demonstration of the low temperature magnetic domains and gives a new perspective to understand the Verwey transition in Fe3O4 thin films.
We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe$_3$O$_4$(111)/Yttria-stabilized Zirconia (YSZ) nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of t he defect-free Fe$_3$O$_4$ film is found to be strikingly larger than that of the as-grown Fe$_3$O$_4$ film with structural defects. We demonstrate that the population of the first-order perpendicular standing spin wave (PSSW) mode, which is exclusively observed in the defect-free film under sufficiently high external magnetic fields, leads to the enhancement of the magnetic damping of the uniform precession (Kittel) mode. We propose a physical picture in which the PSSW mode acts as an additional channel for the extra energy dissipation of the Kittel mode. The energy transfer from Kittel mode to PSSW mode increases as in-plane magnetization precession becomes more uniform, resulting in the unique intrinsic magnetic damping enhancement in the defect-free Fe$_3$O$_4$ film.
80 - X. H. Liu , W. Liu , Z. D. Zhang 2018
We report the tunability of the exchange bias effect by the first-order metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey transition, the exchange bias field is substantially enhanced because of a sharp increase in magnetocrystalline anisotropy constant from high-temperature cubic to lowtemperature monoclinic structure. Moreover, with respect to the Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) bilayer is greatly increased for all the temperature range, which would be due to the coupling between Co spins and Fe spins across the interface.
The magnetic and structural properties of highly ordered (S ~ 0.82) epitaxial Fe50-xMnxPt50 thin films were investigated. We report the change in the magnetic properties of Mn doped FePt epitaxial thin films. This study differs from the earlier exper imental studies on Mn doped FePt based alloys. Ordered L10 Fe50-xMnxPt50 (x=0, 6, 9, 12 and 15) thin films with a constant thickness of 45 nm were prepared by co-sputtering Fe50Pt50 and Mn50Pt50 on to MgO (100) single crystal substrate. We find a significant increase in the coercivity for Fe-Mn-Pt thin films. We have shown that this increase in magnetic properties coincide with the tetragonal distortion, while the recent first principles study of Mn doped FePt showed the sub lattice ordering of ferromagnetically aligned Mn atoms would lead to increase in magnetic properties in the FeMnPt ternary alloy system with fixed Pt concentration. At x=12 the coercivity has increased by 46.4 % when compared to Fe50Pt50. The increase in magnetic properties in Fe50-xMnxPt50 is due to the tetragonal distortion as experimental c/a ratio is larger than the expected c/a ratio for ferromagnetically ordered Mn atoms in the sublattice at the concentration x=12. Thus we show that high temperature deposition and high temperature annealing is one of the methods to achieve large coercivity in Mn doped FePt as it leads to tetragonal distortion.
Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at room temperature. Magnetic and electric transport properties of the as-processed thin films reveal an abnormal behavior in the temperature dependent magnetization M(T) below the antiferrodistortive STO phase transition (TSTO) and also an anomaly in the magnetoresistance and electrical resistivity close to the same temperature. Up to 100 nm LSMO thin films, an in-excess magnetization and pronounced changes in the coercivity are evidenced, achieved through the interface-mediated magnetoelastic coupling with antiferrodistortive domain wall movement occurring below TSTO. Contrarily, for thicker LSMO thin films, above 100 nm, an in-defect magnetization is observed. This reversed behavior can be understood within the emergence in the upper layer of the film, observed by high resolution transmission electron microscopy, of a branched structure needed to relax elastic energy stored in the film which leads to randomly oriented magnetic domain reconstructions. For enough high-applied magnetic fields, as thermodynamic equilibrium is reached, a fully suppression of the anomalous magnetization occurs, wherein the temperature dependence of the magnetization starts to follow the expected Brillouin behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا