ﻻ يوجد ملخص باللغة العربية
Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at room temperature. Magnetic and electric transport properties of the as-processed thin films reveal an abnormal behavior in the temperature dependent magnetization M(T) below the antiferrodistortive STO phase transition (TSTO) and also an anomaly in the magnetoresistance and electrical resistivity close to the same temperature. Up to 100 nm LSMO thin films, an in-excess magnetization and pronounced changes in the coercivity are evidenced, achieved through the interface-mediated magnetoelastic coupling with antiferrodistortive domain wall movement occurring below TSTO. Contrarily, for thicker LSMO thin films, above 100 nm, an in-defect magnetization is observed. This reversed behavior can be understood within the emergence in the upper layer of the film, observed by high resolution transmission electron microscopy, of a branched structure needed to relax elastic energy stored in the film which leads to randomly oriented magnetic domain reconstructions. For enough high-applied magnetic fields, as thermodynamic equilibrium is reached, a fully suppression of the anomalous magnetization occurs, wherein the temperature dependence of the magnetization starts to follow the expected Brillouin behavior.
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra
We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented
We have explored the influence of deposition pressure and temperature on the growth of BiFeO3 thin films by pulsed laser deposition onto (001)-oriented SrTiO3 substrates. Single-phase BiFeO3 films are obtained in a region close to 10-2 mbar and 580C.
The rate and pathways of relaxation of a magnetic medium to its equilibrium following excitation with intense and short laser pulses are the key ingredients of ultrafast optical control of spins. Here we study experimentally the evolution of the magn