ترغب بنشر مسار تعليمي؟ اضغط هنا

Interactive Agent Modeling by Learning to Probe

68   0   0.0 ( 0 )
 نشر من قبل Tianmin Shu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability of modeling the other agents, such as understanding their intentions and skills, is essential to an agents interactions with other agents. Conventional agent modeling relies on passive observation from demonstrations. In this work, we propose an interactive agent modeling scheme enabled by encouraging an agent to learn to probe. In particular, the probing agent (i.e. a learner) learns to interact with the environment and with a target agent (i.e., a demonstrator) to maximize the change in the observed behaviors of that agent. Through probing, rich behaviors can be observed and are used for enhancing the agent modeling to learn a more accurate mind model of the target agent. Our framework consists of two learning processes: i) imitation learning for an approximated agent model and ii) pure curiosity-driven reinforcement learning for an efficient probing policy to discover new behaviors that otherwise can not be observed. We have validated our approach in four different tasks. The experimental results suggest that the agent model learned by our approach i) generalizes better in novel scenarios than the ones learned by passive observation, random probing, and other curiosity-driven approaches do, and ii) can be used for enhancing performance in multiple applications including distilling optimal planning to a policy net, collaboration, and competition. A video demo is available at https://www.dropbox.com/s/8mz6rd3349tso67/Probing_Demo.mov?dl=0

قيم البحث

اقرأ أيضاً

In this work, we propose a novel memory-based multi-agent meta-learning architecture and learning procedure that allows for learning of a shared communication policy that enables the emergence of rapid adaptation to new and unseen environments by lea rning to learn learning algorithms through communication. Behavior, adaptation and learning to adapt emerges from the interactions of homogeneous experts inside a single agent. The proposed architecture should allow for generalization beyond the level seen in existing methods, in part due to the use of a single policy shared by all experts within the agent as well as the inherent modularity of Badger.
In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to textit{interrupt} an agent in order to prevent dangerous situations from happening. Yet, as part of their l earning process, agents may link these interruptions, that impact their reward, to specific states and deliberately avoid them. The situation is particularly challenging in a multi-agent context because agents might not only learn from their own past interruptions, but also from those of other agents. Orseau and Armstrong defined emph{safe interruptibility} for one learner, but their work does not naturally extend to multi-agent systems. This paper introduces textit{dynamic safe interruptibility}, an alternative definition more suited to decentralized learning problems, and studies this notion in two learning frameworks: textit{joint action learners} and textit{independent learners}. We give realistic sufficient conditions on the learning algorithm to enable dynamic safe interruptibility in the case of joint action learners, yet show that these conditions are not sufficient for independent learners. We show however that if agents can detect interruptions, it is possible to prune the observations to ensure dynamic safe interruptibility even for independent learners.
380 - Tianmin Shu , Yuandong Tian 2018
Most of the prior work on multi-agent reinforcement learning (MARL) achieves optimal collaboration by directly controlling the agents to maximize a common reward. In this paper, we aim to address this from a different angle. In particular, we conside r scenarios where there are self-interested agents (i.e., worker agents) which have their own minds (preferences, intentions, skills, etc.) and can not be dictated to perform tasks they do not wish to do. For achieving optimal coordination among these agents, we train a super agent (i.e., the manager) to manage them by first inferring their minds based on both current and past observations and then initiating contracts to assign suitable tasks to workers and promise to reward them with corresponding bonuses so that they will agree to work together. The objective of the manager is maximizing the overall productivity as well as minimizing payments made to the workers for ad-hoc worker teaming. To train the manager, we propose Mind-aware Multi-agent Management Reinforcement Learning (M^3RL), which consists of agent modeling and policy learning. We have evaluated our approach in two environments, Resource Collection and Crafting, to simulate multi-agent management problems with various task settings and multiple designs for the worker agents. The experimental results have validated the effectiveness of our approach in modeling worker agents minds online, and in achieving optimal ad-hoc teaming with good generalization and fast adaptation.
Multi-agent reinforcement learning (MARL) under partial observability has long been considered challenging, primarily due to the requirement for each agent to maintain a belief over all other agents local histories -- a domain that generally grows ex ponentially over time. In this work, we investigate a partially observable MARL problem in which agents are cooperative. To enable the development of tractable algorithms, we introduce the concept of an information state embedding that serves to compress agents histories. We quantify how the compression error influences the resulting value functions for decentralized control. Furthermore, we propose an instance of the embedding based on recurrent neural networks (RNNs). The embedding is then used as an approximate information state, and can be fed into any MARL algorithm. The proposed embed-then-learn pipeline opens the black-box of existing (partially observable) MARL algorithms, allowing us to establish some theoretical guarantees (error bounds of value functions) while still achieving competitive performance with many end-to-end approaches.
We conduct an empirical study on discovering the ordered collective dynamics obtained by a population of intelligence agents, driven by million-agent reinforcement learning. Our intention is to put intelligent agents into a simulated natural context and verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-scale predator-prey world, where the laws of the world are designed by only the findings or logical equivalence that have been discovered in nature. We endow the agents with the intelligence based on deep reinforcement learning (DRL). In order to scale the population size up to millions agents, a large-scale DRL training platform with redesigned experience buffer is proposed. Our results show that the population dynamics of AI agents, driven only by each agents individual self-interest, reveals an ordered pattern that is similar to the Lotka-Volterra model studied in population biology. We further discover the emergent behaviors of collective adaptations in studying how the agents grouping behaviors will change with the environmental resources. Both of the two findings could be explained by the self-organization theory in nature.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا