ترغب بنشر مسار تعليمي؟ اضغط هنا

Information State Embedding in Partially Observable Cooperative Multi-Agent Reinforcement Learning

336   0   0.0 ( 0 )
 نشر من قبل Weichao Mao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-agent reinforcement learning (MARL) under partial observability has long been considered challenging, primarily due to the requirement for each agent to maintain a belief over all other agents local histories -- a domain that generally grows exponentially over time. In this work, we investigate a partially observable MARL problem in which agents are cooperative. To enable the development of tractable algorithms, we introduce the concept of an information state embedding that serves to compress agents histories. We quantify how the compression error influences the resulting value functions for decentralized control. Furthermore, we propose an instance of the embedding based on recurrent neural networks (RNNs). The embedding is then used as an approximate information state, and can be fed into any MARL algorithm. The proposed embed-then-learn pipeline opens the black-box of existing (partially observable) MARL algorithms, allowing us to establish some theoretical guarantees (error bounds of value functions) while still achieving competitive performance with many end-to-end approaches.



قيم البحث

اقرأ أيضاً

In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to textit{interrupt} an agent in order to prevent dangerous situations from happening. Yet, as part of their l earning process, agents may link these interruptions, that impact their reward, to specific states and deliberately avoid them. The situation is particularly challenging in a multi-agent context because agents might not only learn from their own past interruptions, but also from those of other agents. Orseau and Armstrong defined emph{safe interruptibility} for one learner, but their work does not naturally extend to multi-agent systems. This paper introduces textit{dynamic safe interruptibility}, an alternative definition more suited to decentralized learning problems, and studies this notion in two learning frameworks: textit{joint action learners} and textit{independent learners}. We give realistic sufficient conditions on the learning algorithm to enable dynamic safe interruptibility in the case of joint action learners, yet show that these conditions are not sufficient for independent learners. We show however that if agents can detect interruptions, it is possible to prune the observations to ensure dynamic safe interruptibility even for independent learners.
135 - Zijian Gao , Kele Xu , Bo Ding 2021
Recently, deep reinforcement learning (RL) algorithms have made great progress in multi-agent domain. However, due to characteristics of RL, training for complex tasks would be resource-intensive and time-consuming. To meet this challenge, mutual lea rning strategy between homogeneous agents is essential, which is under-explored in previous studies, because most existing methods do not consider to use the knowledge of agent models. In this paper, we present an adaptation method of the majority of multi-agent reinforcement learning (MARL) algorithms called KnowSR which takes advantage of the differences in learning between agents. We employ the idea of knowledge distillation (KD) to share knowledge among agents to shorten the training phase. To empirically demonstrate the robustness and effectiveness of KnowSR, we performed extensive experiments on state-of-the-art MARL algorithms in collaborative and competitive scenarios. The results demonstrate that KnowSR outperforms recently reported methodologies, emphasizing the importance of the proposed knowledge sharing for MARL.
We study fairness through the lens of cooperative multi-agent learning. Our work is motivated by empirical evidence that naive maximization of team reward yields unfair outcomes for individual team members. To address fairness in multi-agent contexts , we introduce team fairness, a group-based fairness measure for multi-agent learning. We then prove that it is possible to enforce team fairness during policy optimization by transforming the teams joint policy into an equivariant map. We refer to our multi-agent learning strategy as Fairness through Equivariance (Fair-E) and demonstrate its effectiveness empirically. We then introduce Fairness through Equivariance Regularization (Fair-ER) as a soft-constraint version of Fair-E and show that it reaches higher levels of utility than Fair-E and fairer outcomes than non-equivariant policies. Finally, we present novel findings regarding the fairness-utility trade-off in multi-agent settings; showing that the magnitude of the trade-off is dependent on agent skill level.
380 - Tianmin Shu , Yuandong Tian 2018
Most of the prior work on multi-agent reinforcement learning (MARL) achieves optimal collaboration by directly controlling the agents to maximize a common reward. In this paper, we aim to address this from a different angle. In particular, we conside r scenarios where there are self-interested agents (i.e., worker agents) which have their own minds (preferences, intentions, skills, etc.) and can not be dictated to perform tasks they do not wish to do. For achieving optimal coordination among these agents, we train a super agent (i.e., the manager) to manage them by first inferring their minds based on both current and past observations and then initiating contracts to assign suitable tasks to workers and promise to reward them with corresponding bonuses so that they will agree to work together. The objective of the manager is maximizing the overall productivity as well as minimizing payments made to the workers for ad-hoc worker teaming. To train the manager, we propose Mind-aware Multi-agent Management Reinforcement Learning (M^3RL), which consists of agent modeling and policy learning. We have evaluated our approach in two environments, Resource Collection and Crafting, to simulate multi-agent management problems with various task settings and multiple designs for the worker agents. The experimental results have validated the effectiveness of our approach in modeling worker agents minds online, and in achieving optimal ad-hoc teaming with good generalization and fast adaptation.
Exploration is critical for good results in deep reinforcement learning and has attracted much attention. However, existing multi-agent deep reinforcement learning algorithms still use mostly noise-based techniques. Very recently, exploration methods that consider cooperation among multiple agents have been developed. However, existing methods suffer from a common challenge: agents struggle to identify states that are worth exploring, and hardly coordinate exploration efforts toward those states. To address this shortcoming, in this paper, we propose cooperative multi-agent exploration (CMAE): agents share a common goal while exploring. The goal is selected from multiple projected state spaces via a normalized entropy-based technique. Then, agents are trained to reach this goal in a coordinated manner. We demonstrate that CMAE consistently outperforms baselines on various tasks, including a sparse-reward version of the multiple-particle environment (MPE) and the Starcraft multi-agent challenge (SMAC).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا