ﻻ يوجد ملخص باللغة العربية
While deep neural networks are a highly successful model class, their large memory footprint puts considerable strain on energy consumption, communication bandwidth, and storage requirements. Consequently, model size reduction has become an utmost goal in deep learning. A typical approach is to train a set of deterministic weights, while applying certain techniques such as pruning and quantization, in order that the empirical weight distribution becomes amenable to Shannon-style coding schemes. However, as shown in this paper, relaxing weight determinism and using a full variational distribution over weights allows for more efficient coding schemes and consequently higher compression rates. In particular, following the classical bits-back argument, we encode the network weights using a random sample, requiring only a number of bits corresponding to the Kullback-Leibler divergence between the sampled variational distribution and the encoding distribution. By imposing a constraint on the Kullback-Leibler divergence, we are able to explicitly control the compression rate, while optimizing the expected loss on the training set. The employed encoding scheme can be shown to be close to the optimal information-theoretical lower bound, with respect to the employed variational family. Our method sets new state-of-the-art in neural network compression, as it strictly dominates previous approaches in a Pareto sense: On the benchmarks LeNet-5/MNIST and VGG-16/CIFAR-10, our approach yields the best test performance for a fixed memory budget, and vice versa, it achieves the highest compression rates for a fixed test performance.
Stochastic gradient descent with backpropagation is the workhorse of artificial neural networks. It has long been recognized that backpropagation fails to be a biologically plausible algorithm. Fundamentally, it is a non-local procedure -- updating o
Compressed sensing techniques enable efficient acquisition and recovery of sparse, high-dimensional data signals via low-dimensional projections. In this work, we propose Uncertainty Autoencoders, a learning framework for unsupervised representation
Both uncertainty estimation and interpretability are important factors for trustworthy machine learning systems. However, there is little work at the intersection of these two areas. We address this gap by proposing a novel method for interpreting un
A number of machine learning tasks entail a high degree of invariance: the data distribution does not change if we act on the data with a certain group of transformations. For instance, labels of images are invariant under translations of the images.
We investigate the generalisation performance of Distributed Gradient Descent with Implicit Regularisation and Random Features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution