ﻻ يوجد ملخص باللغة العربية
Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth.
We investigate the problem of inferring the causal predictors of a response $Y$ from a set of $d$ explanatory variables $(X^1,dots,X^d)$. Classical ordinary least squares regression includes all predictors that reduce the variance of $Y$. Using only
Information geometry uses the formal tools of differential geometry to describe the space of probability distributions as a Riemannian manifold with an additional dual structure. The formal equivalence of compositional data with discrete probability
We prove that any implementation of pivotal sampling is more efficient than multinomial sampling. This property entails the weak consistency of the Horvitz-Thompson estimator and the existence of a conservative variance estimator. A small simulation study supports our findings.
We present a joint copula-based model for insurance claims and sizes. It uses bivariate copulae to accommodate for the dependence between these quantities. We derive the general distribution of the policy loss without the restrictive assumption of in
Testing large covariance matrices is of fundamental importance in statistical analysis with high-dimensional data. In the past decade, three types of test statistics have been studied in the literature: quadratic form statistics, maximum form statist