ﻻ يوجد ملخص باللغة العربية
Compressed sensing proposes to reconstruct more degrees of freedom in a signal than the number of values actually measured. Compressed sensing therefore risks introducing errors -- inserting spurious artifacts or masking the abnormalities that medical imaging seeks to discover. The present case study of estimating errors using the standard statistical tools of a jackknife and a bootstrap yields error bars in the form of full images that are remarkably representative of the actual errors (at least when evaluated and validated on data sets for which the ground truth and hence the actual error is available). These images show the structure of possible errors -- without recourse to measuring the entire ground truth directly -- and build confidence in regions of the images where the estimated errors are small.
Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements in a highly efficient manner. Originally devised for the recovery of sparse signals, it has become clear that
In applications of scanning probe microscopy, images are acquired by raster scanning a point probe across a sample. Viewed from the perspective of compressed sensing (CS), this pointwise sampling scheme is inefficient, especially when the target imag
Reconstructing under-sampled k-space measurements in Compressed Sensing MRI (CS-MRI) is classically solved with regularized least-squares. Recently, deep learning has been used to amortize this optimization by training reconstruction networks on a da
We present a method for combining the data retrieved by multiple coils of a Magnetic Resonance Imaging (MRI) system with the a priori assumption of compressed sensing to reconstruct a single image. The final image is the result of an optimization pro
Compressed sensing fluorescence microscopy (CS-FM) proposes a scheme whereby less measurements are collected during sensing and reconstruction is performed to recover the image. Much work has gone into optimizing the sensing and reconstruction portio