ﻻ يوجد ملخص باللغة العربية
We present a method for combining the data retrieved by multiple coils of a Magnetic Resonance Imaging (MRI) system with the a priori assumption of compressed sensing to reconstruct a single image. The final image is the result of an optimization problem that only includes constraints based on fundamental physics (Maxwells equations and the Biot-Savart law) and accepted phenomena (e.g. sparsity in the Wavelet domain). The problem is solved using an alternating minimization approach: two convex optimization problems are alternately solved, one with the Fast Iterative Shrinkage Threshold Algorithm (FISTA) and the other with the Primal-Dual Hybrid Gradient (PDHG) method. We show results on simulated data as well as data of the knee, brain, and ankle. In all cases studied, results from the new algorithm show higher quality and increased detail when compared to conventional reconstruction algorithms.
Recent works have demonstrated that deep learning (DL) based compressed sensing (CS) implementation can accelerate Magnetic Resonance (MR) Imaging by reconstructing MR images from sub-sampled k-space data. However, network architectures adopted in pr
In applications of scanning probe microscopy, images are acquired by raster scanning a point probe across a sample. Viewed from the perspective of compressed sensing (CS), this pointwise sampling scheme is inefficient, especially when the target imag
Segmentation of multiple organs-at-risk (OARs) is essential for radiation therapy treatment planning and other clinical applications. We developed an Automated deep Learning-based Abdominal Multi-Organ segmentation (ALAMO) framework based on 2D U-net
Modern reconstruction methods for magnetic resonance imaging (MRI) exploit the spatially varying sensitivity profiles of receive-coil arrays as additional source of information. This allows to reduce the number of time-consuming Fourier-encoding step
Compressed sensing proposes to reconstruct more degrees of freedom in a signal than the number of values actually measured. Compressed sensing therefore risks introducing errors -- inserting spurious artifacts or masking the abnormalities that medica