ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularization-Agnostic Compressed Sensing MRI Reconstruction with Hypernetworks

126   0   0.0 ( 0 )
 نشر من قبل Alan Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Reconstructing under-sampled k-space measurements in Compressed Sensing MRI (CS-MRI) is classically solved with regularized least-squares. Recently, deep learning has been used to amortize this optimization by training reconstruction networks on a dataset of under-sampled measurements. Here, a crucial design choice is the regularization function(s) and corresponding weight(s). In this paper, we explore a novel strategy of using a hypernetwork to generate the parameters of a separate reconstruction network as a function of the regularization weight(s), resulting in a regularization-agnostic reconstruction model. At test time, for a given under-sampled image, our model can rapidly compute reconstructions with different amounts of regularization. We analyze the variability of these reconstructions, especially in situations when the overall quality is similar. Finally, we propose and empirically demonstrate an efficient and data-driven way of maximizing reconstruction performance given limited hypernetwork capacity. Our code is publicly available at https://github.com/alanqrwang/RegAgnosticCSMRI.


قيم البحث

اقرأ أيضاً

Compressed Sensing MRI (CS-MRI) has shown promise in reconstructing under-sampled MR images, offering the potential to reduce scan times. Classical techniques minimize a regularized least-squares cost function using an expensive iterative optimizatio n procedure. Recently, deep learning models have been developed that model the iterative nature of classical techniques by unrolling iterations in a neural network. While exhibiting superior performance, these methods require large quantities of ground-truth images and have shown to be non-robust to unseen data. In this paper, we explore a novel strategy to train an unrolled reconstruction network in an unsupervised fashion by adopting a loss function widely-used in classical optimization schemes. We demonstrate that this strategy achieves lower loss and is computationally cheap compared to classical optimization solvers while also exhibiting superior robustness compared to supervised models. Code is available at https://github.com/alanqrwang/HQSNet.
Compressed sensing fluorescence microscopy (CS-FM) proposes a scheme whereby less measurements are collected during sensing and reconstruction is performed to recover the image. Much work has gone into optimizing the sensing and reconstruction portio ns separately. We propose a method of jointly optimizing both sensing and reconstruction end-to-end under a total measurement constraint, enabling learning of the optimal sensing scheme concurrently with the parameters of a neural network-based reconstruction network. We train our model on a rich dataset of confocal, two-photon, and wide-field microscopy images comprising of a variety of biological samples. We show that our method outperforms several baseline sensing schemes and a regularized regression reconstruction algorithm.
Recent works have demonstrated that deep learning (DL) based compressed sensing (CS) implementation can accelerate Magnetic Resonance (MR) Imaging by reconstructing MR images from sub-sampled k-space data. However, network architectures adopted in pr evious methods are all designed by handcraft. Neural Architecture Search (NAS) algorithms can automatically build neural network architectures which have outperformed human designed ones in several vision tasks. Inspired by this, here we proposed a novel and efficient network for the MR image reconstruction problem via NAS instead of manual attempts. Particularly, a specific cell structure, which was integrated into the model-driven MR reconstruction pipeline, was automatically searched from a flexible pre-defined operation search space in a differentiable manner. Experimental results show that our searched network can produce better reconstruction results compared to previous state-of-the-art methods in terms of PSNR and SSIM with 4-6 times fewer computation resources. Extensive experiments were conducted to analyze how hyper-parameters affect reconstruction performance and the searched structures. The generalizability of the searched architecture was also evaluated on different organ MR datasets. Our proposed method can reach a better trade-off between computation cost and reconstruction performance for MR reconstruction problem with good generalizability and offer insights to design neural networks for other medical image applications. The evaluation code will be available at https://github.com/yjump/NAS-for-CSMRI.
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed. Leveraging a combination of patch-based discriminator and structural similarity index based loss, our model focuses on preserving high frequency content as well as fine textural details in the reconstructed image. Dense and residual connections have been incorporated in a U-net based generator architecture to allow easier transfer of information as well as variable network length. We show that our algorithm outperforms state-of-the-art methods in terms of quality of reconstruction and robustness to noise. Also, the reconstruction time, which is of the order of milliseconds, makes it highly suitable for real-time clinical use.
The CSGM framework (Bora-Jalal-Price-Dimakis17) has shown that deep generative priors can be powerful tools for solving inverse problems. However, to date this framework has been empirically successful only on certain datasets (for example, human fac es and MNIST digits), and it is known to perform poorly on out-of-distribution samples. In this paper, we present the first successful application of the CSGM framework on clinical MRI data. We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions. Furthermore, our experiments and theory show that posterior sampling is robust to changes in the ground-truth distribution and measurement process. Our code and models are available at: url{https://github.com/utcsilab/csgm-mri-langevin}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا