ﻻ يوجد ملخص باللغة العربية
The antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure is a promising material for the AFM spintronics. The resistivity measurements indicate the presence of defects about whose types and concentrations is more speculated as known. We confirmed vacancies on Mn or Cu sublattices and Mn$_{rm Cu}$ and Cu$_{rm Mn}$ antisites as most probable defects in CuMnAs by our new ab initio total energy calculations. We have estimated resistivities of possible defect types as well as resistivities of samples for which the X-ray structural analysis is available. In the latter case we have found that samples with Cu- and Mn-vacancies with low formation energies have also resistivities which agree well with the experiment. Finally, we have also calculated exchange interactions and estimated the Neel temperatures by using the Monte Carlo approach. A good agreement with experiment was obtained.
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the ep
Electronic, magnetic, and transport properties of the antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure, promising for the AFM spintronics, are studied from first principles using the Vienna ab-initio simulation package. We investigate t
The nonlinear Hall effect is mostly studied as a Berry curvature dipole effect in nonmagnetic materials, which depends linearly on the relaxation time. On the other hand, in magnetic materials, an intrinsic nonlinear Hall effect can exist, which does
Technological applications of novel metastable materials are frequently inhibited by abundant defects residing in these materials. Using first-principles methods we investigate the point defect thermodynamics and phase segregation in the technologica
We present results of systematic fully relativistic first-principles calculations of the uniaxial magnetic anisotropy energy (MAE) of a disordered and partially ordered tetragonal Fe-Co alloy using the coherent potential approximation (CPA). This all