ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of the tetragonal CuMnAs: a first-principles study

249   0   0.0 ( 0 )
 نشر من قبل Frantisek Maca
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic, magnetic, and transport properties of the antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure, promising for the AFM spintronics, are studied from first principles using the Vienna ab-initio simulation package. We investigate the site-occupation of sublattices and the lattice parameters of three competing phases. We analyze the factors that determine which of the three conceivable structures will prevail. We then estimate formation energies of possible defects for the experimentally prepared lattice structure. Mn$_{rm Cu}$- and Cu$_{rm Mn}$-antisites as well as Mn$leftrightarrow$Cu swaps and vacancies on Mn or Cu sublattices were identified as possible candidates for defects in CuMnAs. We find that the interactions of the growing thin film with the substrate and with vacuum as well as the electron correlations are important for the phase stability while the effect of defects is weak. In the next step, using the tight-binding linear muffin-tin orbital method for the experimental structure, we estimate transport properties for systems containing defects with low formation energies. Finally, we determine the exchange interactions and estimate the Neel temperature of the AFM-CuMnAs alloy using the Monte Carlo approach. A good agreement of the calculated resistivity and Neel temperature with experimental data makes possible to draw conclusions concerning the competing phases.



قيم البحث

اقرأ أيضاً

160 - F. Maca , J. Kudrnovsky , P. Balaz 2018
The antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure is a promising material for the AFM spintronics. The resistivity measurements indicate the presence of defects about whose types and concentrations is more speculated as known. We con firmed vacancies on Mn or Cu sublattices and Mn$_{rm Cu}$ and Cu$_{rm Mn}$ antisites as most probable defects in CuMnAs by our new ab initio total energy calculations. We have estimated resistivities of possible defect types as well as resistivities of samples for which the X-ray structural analysis is available. In the latter case we have found that samples with Cu- and Mn-vacancies with low formation energies have also resistivities which agree well with the experiment. Finally, we have also calculated exchange interactions and estimated the Neel temperatures by using the Monte Carlo approach. A good agreement with experiment was obtained.
159 - Shuai Dong , Wei Li , Xin Huang 2013
Recent experiments reported giant magnetoresistance at room temperature in LaOMnAs. Here a density functional theory calculation is performed to investigate magnetic properties of LaOMnAs. The ground state is found to be the G-type antiferromagnetic order within the $ab$ plane but coupled ferromagnetically between planes, in agreement with recent neutron investigations. The electronic band structures suggest an insulating state which is driven by the particular G-type magnetic order, while a metallic state accompanies the ferromagnetic order. This relation between magnetism and conductance may be helpful to qualitatively understand the giant magnetoresistance effects.
We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric pr operties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the ep itaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Neel temperature. Combined with our demonstration of room-temperature exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.
The electronic and phonon transport properties of quaternary tetradymite BiSbSeTe2 are investigated using first-principles approach and Boltzmann transport theory. Unlike the binary counterpart Bi2Te3, we obtain a pair of Rashba splitting bands induc ed by the absence of inversion center. Such unique characteristic could lead to a large Seebeck coefficient even at relatively higher carrier concentration. Besides, we find an ultralow lattice thermal conductivity of BiSbSeTe2, especially along the interlayer direction, which can be traced to the extremely small phonon relaxation time mainly induced by the mixed covalent bonds. As a consequence, a considerably large ZT value of ~2.0 can be obtained at 500 K, indicating that the unique lattice structure of BiSbSeTe2 caused by isoelectronic substitution could be an advantage to achieving high thermoelectric performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا