ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding and reducing deleterious defects in metastable alloy GaAsBi

240   0   0.0 ( 0 )
 نشر من قبل Guangfu Luo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Technological applications of novel metastable materials are frequently inhibited by abundant defects residing in these materials. Using first-principles methods we investigate the point defect thermodynamics and phase segregation in the technologically-important metastable alloy GaAsBi. Our calculations predict defect energy levels in good agreement with abundant previous experiments and clarify the defect structures giving rise to these levels. We find that vacancies in some charge states become metastable or unstable with respect to antisite formation, and this instability is a general characteristic of zincblende semiconductors with small ionicity. The dominant point defects degrading electronical and optical performances are predicted to be As$_G$$_a$, Bi$_G$$_a$, Bi$_G$$_a$+Bi$_A$$_s$, As$_G$$_a$+Bi$_A$$_s$, V$_G$$_a$ and V$_G$$_a$+Bi$_A$$_s$, of which the first-four and second-two defects are minority-electron and minority-hole traps, respectively. V$_G$$_a$ is also found to play a critical role in controlling the metastable Bi supersaturation through mediating Bi diffusion and clustering. To reduce the influences of these deleterious defects, we suggest shifting the growth away from As-rich condition and/or using hydrogen passivation to reduce the minority-carrier traps. We expect this work to aid in the applications of GaAsBi to novel electronic and optoelectronic devices, and shine a light on controlling the deleterious defects in other metastable materials.



قيم البحث

اقرأ أيضاً

160 - F. Maca , J. Kudrnovsky , P. Balaz 2018
The antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure is a promising material for the AFM spintronics. The resistivity measurements indicate the presence of defects about whose types and concentrations is more speculated as known. We con firmed vacancies on Mn or Cu sublattices and Mn$_{rm Cu}$ and Cu$_{rm Mn}$ antisites as most probable defects in CuMnAs by our new ab initio total energy calculations. We have estimated resistivities of possible defect types as well as resistivities of samples for which the X-ray structural analysis is available. In the latter case we have found that samples with Cu- and Mn-vacancies with low formation energies have also resistivities which agree well with the experiment. Finally, we have also calculated exchange interactions and estimated the Neel temperatures by using the Monte Carlo approach. A good agreement with experiment was obtained.
Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnes sing the electronic properties of narrow band semiconductors. In this paper, we propose the appearance of another kind of single-site defect ($beta-Sn$), consisting of a single Sn atom in the center of a Ge divacancy, that may account for these facts. Accordingly, we examine the electronic and structural properties of these alloys by performing extensive numerical ab-initio calculations around local defects. The results show that the environment of the $beta$ defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of metallic white tin and its segregation, as found in amorphous samples. Using the information stemming from these local defect calculations, we built a simple statistical model to investigate at which concentration these $beta$ defects can be formed in thermal equilibrium. These results agree remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases. We also performed single site effective-field calculations of the electronic structure, which further support our hypothesis.
Non-invasive local probes are needed to characterize bulk defects in binary and ternary chalcogenides. These defects contribute to the non-ideal behavior of topological insulators. We have studied bulk electronic properties via $^{125}$Te NMR in Bi$_ 2$Te$_3$, Sb$_2$Te$_3$, Bi$_{0.5}$Sb$_{1.5}$Te$_3$, Bi$_2$Te$_2$Se and Bi$_2$Te$_2$S. A distribution of defects gives rise to asymmetry in the powder lineshapes. We show how the Knight shift, line shape and spin-lattice relaxation report on carrier density, spin-orbit coupling and phase separation in the bulk. The present study confirms that the ordered ternary compound Bi$_2$Te$_2$Se is the best TI candidate material at the present time. Our results, which are in good agreement with transport and ARPES studies, help establish the NMR probe as a valuable method to characterize the bulk properties of these materials.
Achieving efficient and stable ultraviolet emission is a challenging goal in optoelectronic devices. Herein, we investigate the UV luminescence of zinc germanate Zn2GeO4 microwires by means of photoluminescence measurements as a function of temperatu re and excitation conditions. The emitted UV light is composed of two bands (a broad one and a narrow one) associated with the native defects structure. In addition, with the aid of density functional theory (DFT) calculations, the energy positions of the electronic levels related to native defects in Zn2GeO4 have been calculated. In particular, our results support that zinc interstitials are the responsible for the narrow UV band, which is, in turn, split into two components with different temperature dependence behaviour. The origin of the two components is explained on the basis of the particular location of Zn_i in the lattice and agrees with DFT calculations. Furthermore, a kinetic luminescence model is proposed to ascertain the temperature evolution of this UV emission. These results pave the way to exploit defect engineering in achieving functional optoelectronic devices to operate in the UV region.
Using angle-resolved photoemission spectroscopy, we show the direct evidence of charge transfer between adsorbed molecules and metal substrate, i.e. chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2x2 surfaces. The observed band structure shows a un ique signature of charge transfer as CO atoms are adsorbed,revealing the roles of specific orbital characters participating in the chemisorption process. As the coverage of CO increases, the degree of charge transfer between CO and Pt shows clear difference to that of Pt-Sn. With comparison to DFT calculation results, the observed distinct features in the band structure are interpreted as backdonation bonding states of Pt molecular orbital to the 2{pi} orbital of CO. Furthermore, the change in the surface charge concentration, measured from the Fermi surface area, shows Pt surface has a larger charge concentration change than Pt-Sn surface upon CO adsorption. The difference in the charge concentration change between Pt and Pt-Sn surfaces reflects the degree of electronic effects during CO adsorption on Pt-Sn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا