ﻻ يوجد ملخص باللغة العربية
Technological applications of novel metastable materials are frequently inhibited by abundant defects residing in these materials. Using first-principles methods we investigate the point defect thermodynamics and phase segregation in the technologically-important metastable alloy GaAsBi. Our calculations predict defect energy levels in good agreement with abundant previous experiments and clarify the defect structures giving rise to these levels. We find that vacancies in some charge states become metastable or unstable with respect to antisite formation, and this instability is a general characteristic of zincblende semiconductors with small ionicity. The dominant point defects degrading electronical and optical performances are predicted to be As$_G$$_a$, Bi$_G$$_a$, Bi$_G$$_a$+Bi$_A$$_s$, As$_G$$_a$+Bi$_A$$_s$, V$_G$$_a$ and V$_G$$_a$+Bi$_A$$_s$, of which the first-four and second-two defects are minority-electron and minority-hole traps, respectively. V$_G$$_a$ is also found to play a critical role in controlling the metastable Bi supersaturation through mediating Bi diffusion and clustering. To reduce the influences of these deleterious defects, we suggest shifting the growth away from As-rich condition and/or using hydrogen passivation to reduce the minority-carrier traps. We expect this work to aid in the applications of GaAsBi to novel electronic and optoelectronic devices, and shine a light on controlling the deleterious defects in other metastable materials.
The antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure is a promising material for the AFM spintronics. The resistivity measurements indicate the presence of defects about whose types and concentrations is more speculated as known. We con
Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnes
Non-invasive local probes are needed to characterize bulk defects in binary and ternary chalcogenides. These defects contribute to the non-ideal behavior of topological insulators. We have studied bulk electronic properties via $^{125}$Te NMR in Bi$_
Achieving efficient and stable ultraviolet emission is a challenging goal in optoelectronic devices. Herein, we investigate the UV luminescence of zinc germanate Zn2GeO4 microwires by means of photoluminescence measurements as a function of temperatu
Using angle-resolved photoemission spectroscopy, we show the direct evidence of charge transfer between adsorbed molecules and metal substrate, i.e. chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2x2 surfaces. The observed band structure shows a un