ﻻ يوجد ملخص باللغة العربية
The modified Townsend-Perry attached eddy model of Vassilicos et al (2015) combines the outer peak/plateau behaviour of rms streamwise turbulence velocity profiles and the Townsend-Perry log-decay of these profiles at higher distances from the wall. This model was validated by these authors for high Reynolds number tur- bulent pipe flow data and is shown here to describe equally well and with about the same parameter values turbulent boundary layer flow data from four different facilities and a wide range of Reynolds numbers. The model has predictive value as, when extrapolated to the extremely high Reynolds numbers of the SLTEST data obtained at the Great Salt Lake Desert atmospheric test facility, it matches these data quite well.
Four well-resolved LESs of the turbulent boundary layers around a NACA4412 wing section, with Rec ranging from 100,000 to 1,000,000, were performed at 5 degree angle of attack. By comparing the turbulence statistics with those in ZPG TBLs at approxim
Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with different
An experiment was performed using SPIV in the LMFL boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy, $varepsilon = 2 u langle s_{ij}s_{ij} rangle$ where
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor
The interaction between turbulent axisymmetric wakes plays an important role in many industrial applications, notably in the modelling of wind farms. While the non-equilibrium high Reynolds number scalings present in the wake of axisymmetric plates h