ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of turbulence profiles in high Reynolds number turbulent boundary layers and validation of a predictive model

240   0   0.0 ( 0 )
 نشر من قبل Jean-Philippe Laval
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The modified Townsend-Perry attached eddy model of Vassilicos et al (2015) combines the outer peak/plateau behaviour of rms streamwise turbulence velocity profiles and the Townsend-Perry log-decay of these profiles at higher distances from the wall. This model was validated by these authors for high Reynolds number tur- bulent pipe flow data and is shown here to describe equally well and with about the same parameter values turbulent boundary layer flow data from four different facilities and a wide range of Reynolds numbers. The model has predictive value as, when extrapolated to the extremely high Reynolds numbers of the SLTEST data obtained at the Great Salt Lake Desert atmospheric test facility, it matches these data quite well.

قيم البحث

اقرأ أيضاً

Four well-resolved LESs of the turbulent boundary layers around a NACA4412 wing section, with Rec ranging from 100,000 to 1,000,000, were performed at 5 degree angle of attack. By comparing the turbulence statistics with those in ZPG TBLs at approxim ately matching Re_tau, we find that the effect of the adverse pressure gradient (APG) is more intense at lower Reynolds numbers. This indicates that at low Re the outer region of the TBL becomes more energized through the wall-normal convection associated to the APG. This is also reflected in the fact that the inner-scaled wall-normal velocity is larger on the suction side at lower Reynolds numbers. In particular, the wing cases at Rec = 200,000 and 400,000 exhibit wall-normal velocities 40% and 20% larger, respectively, than the case with Rec = 1,000,000. Consequently, the outer-region energizing mechanism associated to the APG is complementary to that present in high-Re TBLs.
Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with different ially heated walls to investigate such convective, turbulent boundary layers. Through the implementation of a multiple-resolution technique, we are able to perform simulations at a wide range of Prandtl numbers $Pr$. This allows us to distinguish the parameter dependences of the horizontal heat flux and the boundary layer widths in terms of the Rayleigh number $Ra$ and Prandtl number $Pr$. For the considered parameter range $1leq Pr leq 100$, $10^6 leq Ra leq 10^9$, we find the flow to be consistent with a buoyancy-controlled regime where the heat flux is independent of the wall separation. For given $Pr$, the heat flux is found to scale linearly with the friction velocity $V_ast$. Finally, we discuss the implications of our results for the parameterisation of heat and salt fluxes at vertical ice-ocean interfaces.
An experiment was performed using SPIV in the LMFL boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy, $varepsilon = 2 u langle s_{ij}s_{ij} rangle$ where $s_{ij}$ is the fluctuating strain-rate and $langle~rangle$ denotes ensemble averages. Also measured were all the moments of the full average deformation rate tensor, as well as all of the first, second and third fluctuating velocity moments except those involving pressure. The Reynolds number was $Re_theta = 7500$ or $Re_tau = 2300$. The results are presented in three separate papers. This first paper (Part I) presents the measured average dissipation, $varepsilon$ and the derivative moments comprising it. It compares the results to the earlier measurements of cite{balint91,honkan97} at lower Reynolds numbers and a new results from a plane channel flow DNS at comparable Reynolds number. It then uses the results to extend and evaluate the theoretical predictions of cite{george97b,wosnik00} for all quantities in the overlap region. Of special interest is the prediction that $varepsilon^+ propto {y^+}^{-1}$ for streamwise homogeneous flows and a nearly indistinguishable power law, $varepsilon propto {y^+}^{gamma-1}$, for boundary layers. In spite of the modest Reynolds number, the predictions seem to be correct. It also predicts and confirms that the transport moment contribution to the energy balance in the overlap region, $partial langle - pv /rho - q^2 v/2 rangle/ partial y$ behaves similarly. An immediate consequence is that the usual eddy viscosity model for these terms cannot be correct. The second paper, Part II, examines in detail the statistical character of the velocity derivatives. The details of the SPIV methodology is in Part III, since it will primarily be of interest to experimentalists.
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor , which we analyze here using direct numerical simulations of isotropic turbulence in periodic domains of up to $12288^3$ grid points, and Taylor-scale Reynolds numbers in the range $140-1300$. We extract the statistics of various terms involved in amplification of strain and additionally condition them on the magnitude of strain. We find that strain is overall self-amplified by the quadratic nonlinearity, and depleted via vortex stretching; whereas pressure Hessian acts to redistribute strain fluctuations towards the mean-field and thus depleting intense strain. Analyzing the intense fluctuations of strain in terms of its eigenvalues reveals that the net amplification is solely produced by the third eigenvalue, resulting in strong compressive action. In contrast, the self-amplification terms acts to deplete the other two eigenvalues, whereas vortex stretching acts to amplify them, both effects canceling each other almost perfectly. The effect of the pressure Hessian for each eigenvalue is qualitatively similar to that of vortex stretching, but significantly weaker in magnitude. Our results conform with the familiar notion that intense strain is organized in sheet-like structures, which are in the vicinity of, but never overlap with regions of intense vorticity due to fundamental differences in their amplifying mechanisms.
The interaction between turbulent axisymmetric wakes plays an important role in many industrial applications, notably in the modelling of wind farms. While the non-equilibrium high Reynolds number scalings present in the wake of axisymmetric plates h as been shown to modify the averaged streamwise scalings of individual wakes, little attention has been paid to their consequences in terms of wake interactions. We propose an experimental setup that tests the presence of non-equilibrium turbulence using the streamwise variation of velocity fluctuations between two bluff bodies facing a laminar flow. We have studied two different sets of plates (one with regular and another with irregular peripheries) with hot-wire anemometry in a wind tunnel. By acquiring streamwise profiles for different plate separations and identifying the wake interaction length for each separation it is possible to show that the interaction between them is consistent with non-equilibrium scalings. This work also generalises previous studies concerned with the interaction of plane wakes to include axisymmetric wakes. We find that a simple mathematical expression for the wake interaction length based on non-equilibrium turbulence scalings can be used to collapse the streamwise developments of the second, third and fourth moments of the streamwise fluctuating velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا