ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bandit Approach to Multiple Testing with False Discovery Control

288   0   0.0 ( 0 )
 نشر من قبل Kevin Jamieson
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an adaptive sampling approach for multiple testing which aims to maximize statistical power while ensuring anytime false discovery control. We consider $n$ distributions whose means are partitioned by whether they are below or equal to a baseline (nulls), versus above the baseline (actual positives). In addition, each distribution can be sequentially and repeatedly sampled. Inspired by the multi-armed bandit literature, we provide an algorithm that takes as few samples as possible to exceed a target true positive proportion (i.e. proportion of actual positives discovered) while giving anytime control of the false discovery proportion (nulls predicted as actual positives). Our sample complexity results match known information theoretic lower bounds and through simulations we show a substantial performance improvement over uniform sampling and an adaptive elimination style algorithm. Given the simplicity of the approach, and its sample efficiency, the method has promise for wide adoption in the biological sciences, clinical testing for drug discovery, and online A/B/n testing problems.

قيم البحث

اقرأ أيضاً

In this paper, we propose a new estimation procedure for discovering the structure of Gaussian Markov random fields (MRFs) with false discovery rate (FDR) control, making use of the sorted l1-norm (SL1) regularization. A Gaussian MRF is an acyclic gr aph representing a multivariate Gaussian distribution, where nodes are random variables and edges represent the conditional dependence between the connected nodes. Since it is possible to learn the edge structure of Gaussian MRFs directly from data, Gaussian MRFs provide an excellent way to understand complex data by revealing the dependence structure among many inputs features, such as genes, sensors, users, documents, etc. In learning the graphical structure of Gaussian MRFs, it is desired to discover the actual edges of the underlying but unknown probabilistic graphical model-it becomes more complicated when the number of random variables (features) p increases, compared to the number of data points n. In particular, when p >> n, it is statistically unavoidable for any estimation procedure to include false edges. Therefore, there have been many trials to reduce the false detection of edges, in particular, using different types of regularization on the learning parameters. Our method makes use of the SL1 regularization, introduced recently for model selection in linear regression. We focus on the benefit of SL1 regularization that it can be used to control the FDR of detecting important random variables. Adapting SL1 for probabilistic graphical models, we show that SL1 can be used for the structure learning of Gaussian MRFs using our suggested procedure nsSLOPE (neighborhood selection Sorted L-One Penalized Estimation), controlling the FDR of detecting edges.
Large-scale multiple testing is a fundamental problem in high dimensional statistical inference. It is increasingly common that various types of auxiliary information, reflecting the structural relationship among the hypotheses, are available. Exploi ting such auxiliary information can boost statistical power. To this end, we propose a framework based on a two-group mixture model with varying probabilities of being null for different hypotheses a priori, where a shape-constrained relationship is imposed between the auxiliary information and the prior probabilities of being null. An optimal rejection rule is designed to maximize the expected number of true positives when average false discovery rate is controlled. Focusing on the ordered structure, we develop a robust EM algorithm to estimate the prior probabilities of being null and the distribution of $p$-values under the alternative hypothesis simultaneously. We show that the proposed method has better power than state-of-the-art competitors while controlling the false discovery rate, both empirically and theoretically. Extensive simulations demonstrate the advantage of the proposed method. Datasets from genome-wide association studies are used to illustrate the new methodology.
Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Ben jamini-Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms of the $p$-values to ensure differential privacy and to select an approximately smallest $p$-value serving as a promising candidate at each iteration; the selected $p$-values are further supplied to the BHq and our private procedure releases only the rejected ones. Moreover, we develop a new technique that is based on a backward submartingale for proving FDR control of a broad class of multiple testing procedures, including our private procedure, and both the BHq step-up and step-down procedures. As a novel aspect, the proof works for arbitrary dependence between the true null and false null test statistics, while FDR control is maintained up to a small multiplicative factor.
115 - Bowen Gang , Wenguang Sun , 2020
Consider the online testing of a stream of hypotheses where a real--time decision must be made before the next data point arrives. The error rate is required to be controlled at {all} decision points. Conventional emph{simultaneous testing rules} are no longer applicable due to the more stringent error constraints and absence of future data. Moreover, the online decision--making process may come to a halt when the total error budget, or alpha--wealth, is exhausted. This work develops a new class of structure--adaptive sequential testing (SAST) rules for online false discover rate (FDR) control. A key element in our proposal is a new alpha--investment algorithm that precisely characterizes the gains and losses in sequential decision making. SAST captures time varying structures of the data stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the alpha-wealth allocation across different time periods. We present theory and numerical results to show that the proposed method is valid for online FDR control and achieves substantial power gain over existing online testing rules.
We discuss a multiple-play multi-armed bandit (MAB) problem in which several arms are selected at each round. Recently, Thompson sampling (TS), a randomized algorithm with a Bayesian spirit, has attracted much attention for its empirically excellent performance, and it is revealed to have an optimal regret bound in the standard single-play MAB problem. In this paper, we propose the multiple-play Thompson sampling (MP-TS) algorithm, an extension of TS to the multiple-play MAB problem, and discuss its regret analysis. We prove that MP-TS for binary rewards has the optimal regret upper bound that matches the regret lower bound provided by Anantharam et al. (1987). Therefore, MP-TS is the first computationally efficient algorithm with optimal regret. A set of computer simulations was also conducted, which compared MP-TS with state-of-the-art algorithms. We also propose a modification of MP-TS, which is shown to have better empirical performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا